Potential of Landsat-8 spectral indices to estimate forest biomass

Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 310

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJHCUM-3-4_004

تاریخ نمایه سازی: 4 خرداد 1398

Abstract:

Forest ecosystems are among the largest terrestrial carbon reservoirs on our planet earth thus playing a vital role in global carbon cycle. Presently, remote sensing techniques provide proper estimates of forest biomass and quantify carbon stocks. The present study has explored Landsat-8 sensor product and evaluated its application in biomass mapping and estimation. The specific objectives were estimation of above ground biomass and carbon stocks using field data, assessing relationships of Landsat-8 spectral indices and field data and  modeling of biomass and carbon stocks based on best linear regression model. Results showed that the highest aboveground biomass and below ground biomass was recorded as 246 t/ha and 64 t/ha whereas the lowest aboveground biomass and below ground biomass was 55 t/ha and 14 t/ha, respectively. Similarly, the highest above ground carbon and below ground carbon (t/ha) were 116 t/ha and 30 t/ha respectively while the lowest above ground carbon and below ground carbon (t/ha) were estimated as 26 t/ha and 6.7 t/ha respectively. Indices computed from Landsat-8 included normalized difference vegetation index, difference vegetation index, soil adjusted vegetation index, perpendicular vegetation index and atmospherically resistant vegetation index. Regarding relationship between aboveground biomass and vegetation indices, the coefficient of correlation (R2) were 0.67, 0.68, 0.65, 0.58 and 0.23 for normalized difference vegetation index, soil adjusted vegetation index, Perpendicular vegetation index, difference vegetation index and atmospherically resistant vegetation index respectively. The stepwise correlation between aboveground biomass (dependent variable) and five indices (Normalized difference vegetation index; soil adjusted vegetation index; Perpendicular vegetation index; difference vegetation index; atmospherically resistant vegetation index). Among five vegetation indices, only soil adjusted vegetation index was selected in stepwise method, satisfying the criteria and the overall model R2 was 0.63 and its adjusted R2 was 0.60. Simple linear regression model between aboveground biomass and single predictor index was better than stepwise regression model with (R2= 0.68) and (Root mean square error = 33.75 t/ha). Thus, soil adjusted vegetation index was considered best for biomass mapping. The study concluded that Landsat-8 product has considerable potential for biomass and carbon stocks estimation and can be expanded to national and regional forest inventories, modeling and future reducing emission from deforestation and forest degradation+ implementation.

Keywords:

Carbon stocks , Climate change , Landsat-8 , Soil adjusted vegetation index (SAVI)

Authors

A.B. Imran

Department of Forestry and Range Management, PMAS Arid Agriculture University, Rawalpindi, Pakistan

S. Ahmed

Department of Forestry and Range Management, PMAS Arid Agriculture University, Rawalpindi, Pakistan

M. Zia-ur-Rehman

Department of Forestry and Range Management, Arid Agriculture University, Rawalpindi, Pakistan

A. Sikandar

Department of Environmental Sciences, Arid Agriculture University, Rawalpindi, Pakistan

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Adan, M.S., (2017). Integrating Sentinel-2A derived indices and terrestrial laser ...
  • Afzal, M.; Akhter, A.M., (2011). Estimation of biomass and carbon ...
  • Ali, A.; Ullah, S.; Bushra, S.; Ahmad, N.; Ali, A.; ...
  • Ali, A., (2015), Biomass and carbon tables for major tree ...
  • Amir, M.; Liu, X.; Ahmad, A.; Saeed, S.; Mannan, A.; ...
  • Bellassen, V.; Luyssaert, S., (2014). Carbon sequestration: Managing forests in ...
  • Carreiras, J.M.; Pereira, J.M.; Pereira, J.S., (2006). Estimation of tree ...
  • Denman, K.L.; Brasseur, G.; Chidthaisong, A.; Ciais, Ph.; Cox, P.; ...
  • Fares, S.; Paoletti, E.; Calfapietra, C.; Mikkelsen, T.N.; Samson, R.; ...
  • Foody, G.M.; Boyd, D.S.; Cutler, M.E., (2003). Predictive relations of ...
  • Gasparri, N.I.; Parmuchi, M.G.; Bono, J.; Karszenbaum, H.; Montenegro, C.L., ...
  • Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A., (2007). Monitoring ...
  • Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.A.; ...
  • Ismail, I.; Sohail, M.; Gilani, H.; Ali, A.; Hussain, K., ...
  • Jordan, C.F., (1969). Derivation of leaf‐area index from quality of ...
  • Kaufman, Y.J.; Tanre, D., (1992). Atmospherically resistant vegetation index (ARVI) ...
  • Kongwongjan, J.; Suwanprasit, C.; Thongchumnum, P., (2012). Comparison of vegetation ...
  • Kumar, D.; Shekhar, S., (2015). Statistical analysis of land surface ...
  • Lazaridou, M.A.; Karagianni, A.C., (2016, July). Landsat 8 multispectral and ...
  • Lu, D., (2005). Aboveground biomass estimation using Landsat TM data ...
  • Malhi, Y.; Baker, T.R.; Phillips, O.L.; Almeida, S.; Alvarez, E.; ...
  • Molto, Q.; Rossi, V.; Blanc, L., (2013). Error propagation in ...
  • Navar, J., (2009). Allometric equations for tree species and carbon ...
  • Nelson, R.F.; Kimes, D.S.; Salas, W.A.; Routhier, M., (2000). Secondary ...
  • Ni, Y., (2014). Global potential for carbon storage based on forest ...
  • Nizami, S.M.; Mirza, S.N.; Livesley, S.; Arndt, S.; Fox, J.C.; ...
  • Paustian, K.; Ravindranath, N.H.; van Amstel, A.R., (2006). IPCC Guidelines ...
  • Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use ...
  • Perry, C .Jr; Lautenschlager, L.F., (1984). Functional equivalence of spectral ...
  • Pravalie, R., (2018). Major perturbations in the Earth s forest ...
  • Prentice, I.C.; G.D.; Farquhar, M.J.R.; Fasham, M.L.; Goulden, M.; Heimann, ...
  • Qi, J.; Chehbouni, A.L.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S., ...
  • Rouse,  J.W.; Haas, R.H.; Schell,  J.A.; Deering, D.W., (1973).  Monitoring ...
  • Ryan, C.M.; Williams, M.; Grace, J., (2011). Above‐and belowground carbon ...
  • Segura, M.; Kanninen, M., (2005). Allometric models for tree volume ...
  • Seidel, D.; Fleck, S.; Leuschner, C.; Hammett, T., (2011). Review ...
  • Shaheen, H.; Khan, R.W.A.; Hussain, K.; Ullah, T.S.; Nasir, M.; ...
  • Streck, C.; Scholz, S.M., (2006). The role of forests in ...
  • Tian, H.; Lu, C.; Ciais, P.; Michalak, A.M.; Canadell, J.G.; ...
  • Vidhya, R.; Vijayasekaran, D.; Farook, M.A.; Jai, S.; Rohini, M.; ...
  • Working Plan, (2012). Forest Planning and Monitoring Center, Working Plan ...
  • Zhu, X.; Liu, D., (2015). Improving forest aboveground biomass estimation ...
  • HOW TO CITE THIS ARTICLE ...
  • Imran, A.B.; Ahmed, S., (2018).  Potential of landsat-8 spectral indices ...
  • نمایش کامل مراجع