A Fast and Self-Repairing Genetic Programming Designer for Logic Circuits

Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 272

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JADM-6-2_011

تاریخ نمایه سازی: 19 تیر 1398

Abstract:

Usually, important parameters in the design and implementation of combinational logic circuits are the number of gates, transistors, and the levels used in the design of the circuit. In this regard, various evolutionary paradigms with different competency have recently been introduced. However, while being advantageous, evolutionary paradigms also have some limitations including: a) lack of confidence in reaching at the correct answer, b) long convergence time, and c) restriction on the tests performed with higher number of input variables. In this paper, we have implemented a genetic programming approach that given a Boolean function, outputs its equivalent circuit such that the truth table is covered and the minimum number of gates (and to some extent transistors and levels) are used. Furthermore, our implementation improves the aforementioned limitations by: Incorporating a self-repairing feature (improving limitation a); Efficient use of the conceivable coding space of the problem, which virtually brings about a kind of parallelism and improves the convergence time (improving limitation b). Moreover, we have applied our method to solve Boolean functions with higher number of inputs (improving limitation c). These issues are verified through multiple tests and the results are reported.

Authors

A. M. Mousavi

Department of Electrical Engineering, Lorestan University, Khoramabad, Lorestan, Iran.

M. Khodadadi

Department of Electrical Engineering, Azad University, Arak Branch, Arak, Iran.