Year: 1399
Publish place: Journal of Solid Mechanics، Vol: 12، Issue: 2
COI: JR_JSMA-12-2_010
Language: EnglishView: 232
This Paper With 16 Page And PDF Format Ready To Download
با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 16 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:
Authors
Abstract:
In the present research, a unified formulation for free vibration analysis of the bidirectional functionally graded conical and cylindrical shells and annular plates on elastic foundations is developed. To cover more individual cases and optimally tailored material properties, the material properties are assumed to vary in both the meridian/radial and transverse directions. The shell/plate is assumed to be supported by a non-uniform Winkler-type elastic foundation in addition to the edge constraints. Therefore, the considered problem contains some complexities that have not been considered together in the available researches. The proposed unified formulation is derived based on the principle of minimum total potential energy and solved using a differential transform analytical method whose center is located at the outer edge of the shell or plate; so that the resulting semi-analytical solution can be employed not only for truncated conical shells and annular plates, but also for complete conical shells and circular plates. Accuracy of results of the proposed unified formulation is verified by comparing the results with those of the three-dimensional theory of elasticity extracted from the ABAQUS finite element analysis code. A variety of the edge condition combinations are considered in the results section. A comprehensive parametric study including assessment of influences of the material properties indices, thickness to radius ratio, stiffness distribution of the elastic foundation, and various boundary conditions, is accomplished. Results reveal that influence of the meridian variations of the material properties on the natural frequencies is more remarkable than that of the transverse gradation.
Keywords:
Free vibration , Bidirectional functionally graded , Conical and cylindrical shells , Annular plates , Non-uniform elastic foundationAnnular plates , Non-uniform elastic foundation
Paper COI Code
This Paper COI Code is JR_JSMA-12-2_010. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:https://civilica.com/doc/1025609/
How to Cite to This Paper:
If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:Molla-Alipour, M and Shariyat, M and Shaban, M,1399,Free Vibration Analysis of Bidirectional Functionally Graded Conical/Cylindrical Shells and Annular Plates on Nonlinear Elastic Foundations, Based on a Unified Differential Transform Analytical Formulation,https://civilica.com/doc/1025609
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :Research Info Management
اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.
Scientometrics
The specifications of the publisher center of this Paper are as follows:
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.
Share this page
More information about COI
COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.
The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.