Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها

Reducing Image Size and Noise Removal in Fast Object Detection using Wavelet Transform Neural Network

Year: 1399
COI: JR_ADMTL-13-2_002
Language: EnglishView: 163
This Paper With 9 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 9 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:


mahmoud jeddi - university complex of materials and manufacturing technology,Malek Ashtar university of technology,Tehran,Iran
Ahmad Khoogar - Department of Mechanical Engineering Maleke Ashtar University of Technology
Ali Mehdipoor Omrani - Departement Of Mechanical Engineering, Malek Ashtar university of Technology, Lavizan, Iran


A robot detects its surroundings through camera information and its response requires a high-speed image process. Due to the increasing application of vision systems, various algorithms have been developed to increase speed of image processing. This paper proposes a double density Discrete Wavelet-based Neural Network to enhance feature extraction and classification of parts in each picture. The Discrete Wavelet-based Neural Network combines multi-scale analysis ability of the wavelet transform and the classification capability of the artificial neural network by setting the wavelet function as the transfer function of the neural network. The automatic assembly process needs to capture the image in an online process in order to recognize the parts in the image and identify the location and orientation of the parts. In this part, the two dimensional double density discrete wavelet transform have been applied to compress and remove noise from the captured Image. By applying a value for the threshold, the coefficients of the wavelet transform function are obtained using these coefficients and the characteristics of the wavelet coefficients are calculated. Subsequently, a multilayer perceptron is trained using these extracted features of the images. To find the best vector characteristics, various combinations of extracted properties have been investigated. This method has succeeded in object detection and results show that the Neural Networks and the training algorithm based on the wavelet transform function have exquisite accuracy in classification. Thus, the developed method is considered effective as compared to other state-of-the-art techniques.


Paper COI Code

This Paper COI Code is JR_ADMTL-13-2_002. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
jeddi, mahmoud and Khoogar, Ahmad and Mehdipoor Omrani, Ali,1399,Reducing Image Size and Noise Removal in Fast Object Detection using Wavelet Transform Neural Network,

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Rojas, R. He. J, Guan, Y., A 3D Object Detection ...
  • Mallat, S., A Wavelet Tour of Signal Processing, Elsevier, the ...
  • Verschae, R., Ruiz, D. S., Object Detection: Current And Future ...
  • Ruiz, L. A., Fdez-Sarria, A., and Recio, J. A., Texture ...
  • Oren, M. C., Papageorgiou, P., Sinha, Osuna, E., and Poggio., ...
  • Starck, J. L., Elad, M., and Donoho, D. L., Image ...
  • Calderbank, A. R., Daubechies, I., Sweldens, W., and Yeo, B. ...
  • Ellinas, J. N., Sangriotis, M. S., Stereo Image Compression Using ...
  • Lalonde, M., Beaulieu, M., and Gagnon, L., Fast and Robust ...
  • Yap, V. V., Wavelet-Based Image Compression for Mobile Applications, Ph.D. ...
  • Vimala, C., Priya, P. A., Artificial Neural Network Based Wavelet ...
  • Strang, G., Nguyen, T., Wavelets and Filter Banks, SIAM, Well ...
  • Azzalini, A., Farge, M., and Schneider, K., Nonlinear Wavelet Thresholding: ...
  • Avci, E., An Expert System Based on Wavelet Neural Network-Adaptive ...
  • Parker, J. R., Algorithms for Image Processing and Computer Vision, ...
  • Subha, P., Automatic Feature Based Image Registration using DWT and ...
  • Haralick, R. M., and Shapiro, L. G., Computer and Robot ...
  • Ding, S., Zhang, J., Xu , X., and Zhang, Y., ...

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.


The specifications of the publisher center of this Paper are as follows:
Type of center: دانشگاه دولتی
Paper count: 9,476
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.