ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

New Generalization of Darbo s Fixed Point Theorem via $alpha$-admissible Simulation Functions with Application

New Generalization of Darbo s Fixed Point Theorem via $alpha$-admissible Simulation Functions with Application
Year: 1399
COI: JR_SCMA-17-2_010
Language: EnglishView: 190
This Paper With 11 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 11 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Hossein Monfared - Department of Mathematics, Bilehsavar Branch, Islamic Azad University, Bilehsavar, Iran.
Mehdi Asadi - Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
Ali Farajzadeh - Department of Mathematics, Razi University, Kermanshah, ۶۷۱۴۹, Iran.

Abstract:

In this paper, at first, we introduce $alpha_{mu}$-admissible, $Z_mu$-contraction and  $N_{mu}$-contraction via simulation functions. We prove some new fixed point theorems for defined class of contractions   via $alpha$-admissible simulation mappings, as well. Our results  can be viewed as extension of the corresponding results in this area.  Moreover, some examples and an application to functional integral equations are given to support the obtained results.

Keywords:

Paper COI Code

This Paper COI Code is JR_SCMA-17-2_010. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1030121/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Monfared, Hossein and Asadi, Mehdi and Farajzadeh, Ali,1399,New Generalization of Darbo s Fixed Point Theorem via $alpha$-admissible Simulation Functions with Application,https://civilica.com/doc/1030121

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • A. Aghajani, J. Banas, and N. Sabzali, Some generalizations of ...
  • J. Bana s and K. Goebel, Measures of noncompactness in ...
  • J. Chen and X. Tang, Generalizations of Darbo s fixed ...
  • C.-M. Chen, E. Karapi nar, and D. O regan, On ...
  • G. Darbo, Punti unitti in transformazioni a condominio non compatto, ...
  • A. Farajzadeha and A. Kaewcharoen, Best proximity point theorems for ...
  • A. Farajzadeha, P. Chuadchawna, and A. Kaewcharoen, Fixed point theorems ...
  • M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 ...
  • L. Gholizadeh and E. Karapi nar, Best proximity point results ...
  • A. Hajji, A generalization of Darbo s fixed point and ...
  • E. Karapi nar and F. Khojasteh, An approach to best ...
  • M. S. Khan, M. Swaleh, and S. Sessa, Fixed point ...
  • F. Khojasteh, S. Shukla, and S. Radenovic, A new approach ...
  • O. Popescu, Some new fixed point theorems for $alpha$-Geraghty contractive ...
  • A.F. Roldan-Lopez-de-Hierro, E. Karapi nar, C. Roldan-Lopez-de-Hierro, and J. Martnez-Moreno, ...
  • A. Samadi and M.B. Ghaemi, An extension of Darbos theorem ...
  • B. Samet, C. Vetro, and P. Vetro, Fixed point theorem ...
  • P. Zangenehmehr, A.P. Farajzadeh, and S.M. Vaezpour, On fixed point ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support