Nonlinear analytical solution of nearly incompressible hyperelastic cylinder with variable thickness under non-uniform pressure by perturbation technique

Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 260

This Paper With 18 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JCAM-50-2_022

تاریخ نمایه سازی: 31 تیر 1399

Abstract:

In this paper, nonlinear analytical solution of pressurized thick cylindrical shells with variable thickness made of hyperelastic materials is presented. The governing equilibrium equations for the cylindrical shell with variable thickness under non-uniform internal pressure are derived based on first-order shear deformation theory (FSDT). The shell is assumed to be made of isotropic and homogenous hyperelastic material in nearly incompressible condition. Two-term Mooney-Rivlin type material is considered which is a suitable hyperelastic model for rubbers. Boundary Layer Method of the perturbation theory which is known as Match Asymptotic Expansion (MAE) is used for solving the governing equations. In order to validate the results of the current analytical solution in analyzing pressurized hyperelastic thick cylinder with variable thickness, a numerical solution based on Finite Element Method (FEM) have been investigated. Afterwards, for a rubber case study, displacements, stresses and hydrostatic pressure distribution resulting from MAE and FEM solution have been presented. Furthermore, the effects of geometry, loading, material properties and incompressibility parameter have been studied. Considering the applicability of the rubber elasticity theory to aortic soft tissues such as elastin, the behaviour of blood vessels under non-uniform pressure distribution has been investigated. The results prove the effectiveness of FSDT and MAE combination to derive and solve the governing equations of nonlinear problems such as nearly incompressible hyperelastic shells.

Authors

Hamed Gharooni

Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran

Mehdi Ghannad

Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • M. C. Boyce, E.M. Arruda, Constitutive models of rubber elasticity: ...
  • W. Ma, B. Qu, F. Guan, Effect of the friction ...
  • T. Sussman, K. J. Bathe, A finite element formulation for ...
  • M. Levinson, I. W. Burgess, A comparison of some simple ...
  • J. C. Simo, R. L. Taylor, Penalty function formulations for ...
  • J. C. Simo, R. L. Taylor, Quasi-incompressible finite elasticity in ...
  • J. S. Chen, C. Pan, A pressure projection method for ...
  • J. S. Chen, C. T. Eu, C. Pan, A pressure ...
  • I. Bijelonja, I. Demirdžic, S. Muzaferija, A finite volume method ...
  • C. A. C. Silva, M. L. Bittencourtb, Structural shape optimization ...
  • S. Doll, K. Schweizerhof, On the development of volumetric strain ...
  • H. Ghaemi, K. Behdinan, A. Spence, On the development of ...
  • G. Montella, A. Calabrese, G. Serino, Mechanical characterization of a ...
  • V. Dias, C. Odenbreit, O. Hechler, F. Scholzen, T. B. ...
  • Y. Zhu, X. Y. Luo, R. W. Ogden, Nonlinear axisymmetric ...
  • M. Tanveer, J. W. Zu, Non-linear vibration of hyperelastic axisymmetric ...
  • J. Kiendl, M. C. Hsu, M. C. H. Wu, A. ...
  • H. R. Eipakchi, Third-order shear deformation theory for stress analysis ...
  • M. Ghannad, G. H. Rahimi, M. Z. Nejad, Elastic analysis ...
  • M. Jabbari, M. Z. Nejad, M. Ghannad, Thermo-elastic analysis of ...
  • H. Gharooni, M. Ghannad, M. Z. Nejad, Thermo-elastic analysis of ...
  • J. Vossoughi, A. Tozeren, Determination of an effective shear modulus ...
  • T. E. Carew, R. N. Vaishnav, D. J. Patel, Compressibility of the ...
  • K. L. Dorrington, N. G. McCrum, Elastin as a rubber, Biopolymers, ...
  • L. A. Mihai, A. Goriely, How to characterize a nonlinear ...
  • J. D. Humphrey, S. L. O’Rourke, 2015, An Introduction to ...
  • D. Azar, D. Ohadi, A. Rachev, J. F. Eberth, M. ...
  • J. N. Reddy, 2002, Energy principles and variational methods in ...
  • J. T. Oden, A theory of penalty methods for finite ...
  • G. A. Holzapfel, 2000, Nonlinear Solid Mechanics, a Continuum Approach ...
  • Y. Başar, D. Weichert, 2000, Nonlinear Continuum Mechanics of Solids, ...
  • I. Doghri, 2000, Mechanics of Deformable Solids: Linear, Nonlinear, Analytical ...
  • J. N. Reddy, 2004, Mechanics of Laminated Composite Plates and ...
  • A. H. Nayfeh, 1981, Introduction to Perturbation Techniques, Wiley, New ...
  • Y. Payan, J. Ohayon, (Eds.) 2017, Biomechanics of Living Organs: ...
  • G. A. Holzapfel, R. W. Ogden, (Eds.) 2003, Biomechanics of ...
  • J. H. Kim, S. Avril, A. Duprey, J. P. Favre, ...
  • G. A. Holzapfel, T. C. Gasser, Computational stress–deformation analysis of ...
  • R. Mihara, A. Takasu, K. Maemura, T. Minami, Prolonged severe ...
  • M. Cecconi, D. D. Backer, M. Antonelli, R. Beale, J. ...
  • B. R. Simon, M. V.  Kaufmann, M. A.  McAfee, A. ...
  • نمایش کامل مراجع