Sphingomyelin liposome bearing whole Leishmania lysate antigens induce strong Th2 immune response in BALB/c mice

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 307

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJBMS-24-2_013

تاریخ نمایه سازی: 19 دی 1399

Abstract:

Objective(s): Whole Leishmania lysate antigens (WLL) has been shown to be effective to tackle leishmaniasis in murine models. Although liposomes can be considered as promising vaccines, the activity of phospholipase-A (PLA) in WLL, breeds difficulties to preparing stable liposomal WLL. One strategy to overcome this shortcoming is to use lipids such as sphingomyelin (SM) which is resistant against PLA. This study aim is formulating stable SM liposomes containing WLL and comparing their adjuvant effects with another first generation vaccine , i.e. solube Leishmania Antigen (SLA) liposomes in BALB/c mice. Materials and Methods: BALB/c mice were immunized subcutaneously, three times with 2-week intervals, with Empty-liposome (E-lipo), Particulate WLL, Liposome-WLL, Liposome-SLA and control Buffer, three times every 2-week. Protection was assessed through measuring the swollen footpads and the load of parasites in the spleen. Other factors were used to assess the response of immune system by means of IgG subclasses, IL-4 and IFN-γ levels and intracellular cytokine assay in cultured splenocytes. Results: Although liposomal WLL were stable in terms of physicochemical properties, mice received Liposome-WLL did not reduce footpad swelling. The load of parasites in spleen and levels of IL-4- were also higher compared to other immunized groups. In terms of IgG isotypes, no considerable difference observed in mice received Liposome-WLL or other formulations.  Conclusion: Liposome-WLL could be a suitable vaccine delivery system when a Th2 response is desired. Also, further studies are warranted to fully understand the role of sphingomyelin in inducing an immune response.

Keywords:

BALB C mouse Humoral immunity Leishmaniasis vaccines Liposomes Phospholipase , a

Authors

Nazanin Biari

Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Seyedeh Hoda Alavizadeh

Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Omid Chavoshian

Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Azam Abbasi

Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Zahra Saberi

Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Seyed Amir Jalali

Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Ali Khamesipoure

Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran

Mahmoud Reza Jaafari

Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Ali Badiee

Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • 1. Croft SL, Sundar S, Fairlamb AH. Drug resistance in ...
  • 2. Firooz A, Khamesipour A, Ghoorchi MH, Nassiri-Kashani M, Eskandari ...
  • 3. Firooz A, Khatami A, Dowlati Y. Itraconazole in the ...
  • 4. Khalil EA, El Hassan AM, Zijlstra EE, Mukhtar MM, ...
  • 5. Momeni AZ, Jalayer T, Emamjomeh M, Khamesipour A, Zicker ...
  • 6. Sharifi I, FeKri AR, Aflatonian MR, Khamesipour A, Nadim ...
  • 7. Noazin S, Khamesipour A, Moulton LH, Tanner M, Nasseri ...
  • 8. Ejazi SA, Ghosh S, Bhattacharyya A, Kamran M, Das ...
  • 9. Hojatizade M, Badiee A, Khamesipour A, Jaafari MR. Evaluation ...
  • 10. Ikeogu NM, Akaluka GN, Edechi CA, Salako ES, Onyilagha ...
  • 11. Afrin F, Rajesh R, Anam K, Gopinath M, Pal ...
  • 12. Rivier D, Bovay P, Shah R, Didisheim S, Mauël ...
  • 13. Bhowmick S, Ali N. Identification of novel Leishmania donovani ...
  • 14. Askarizadeh A, Badiee A, Khamesipour A. Development of nano-carriers ...
  • 15. Zahednezhad F, Saadat M, Valizadeh H, Zakeri-Milani P, Baradaran ...
  • 16. Ravindran R, Maji M, Ali N. Vaccination with liposomal ...
  • 17. Barenholz Y. Sphingomyelin and cholesterol: from membrane biophysics and ...
  • 18. Semple SC, Leone R, Wang J, Leng EC, Klimuk ...
  • 19. Claassen E, Westerhof Y, Versluis B, Kors N, Schellekens ...
  • 20. Melendez AJ. Sphingosine kinase signaling in immune cells: potential ...
  • 21. Chavoshian O, Biari N, Badiee A, Khamesipour A, Abbasi ...
  • 22. Pawlowic MC, Zhang K. Leishmania parasites possess a platelet-activating ...
  • 23. Rezvan H, Moafi M. An overview on Leishmania vaccines: ...
  • 24. Gillespie PM, Beaumier CM, Strych U, Hayward T, Hotez ...
  • 25. Handman E. Leishmaniasis: current status of vaccine development. Clin ...
  • 26. Giunchetti RC, Reis AB, da Silveira-Lemos D, Martins-Filho OA, ...
  • 27. Firouzmand H, Badiee A, Khamesipour A, Heravi Shargh V, ...
  • 28. Jafari I, Heravi Shargh V, Shahryari M, Abbasi A, ...
  • 29. Working Group on Research Priorities for Development of Leishmaniasis ...
  • 30. Giunchetti RC, Corrêa-Oliveira R, Martins-Filho OA, Teixeira-Carvalho A, Roatt ...
  • 31. Lasri S, Sahibi H, Sadak A, Jaffe CL, Rhalem ...
  • 32. Mayrink W, Genaro O, Silva JC, da Costa RT, ...
  • 33. Soto M, Ramírez L, Pineda MA, González VM, Entringer ...
  • 34. Moafi M, Rezvan H, Sherkat R, Taleban R. Leishmania ...
  • 35. Saleem K, Khursheed Z, Hano C, Anjum I, Anjum ...
  • 36. Silverman JA, Deitcher SR. Marqibo®(vincristine sulfate liposome injection) improves ...
  • 37. Bhat HB, Kishimoto T, Abe M, Makino A, Inaba ...
  • 38. Hafez IM, Maurer N, Cullis PR. On the mechanism ...
  • 39. Brgles M, Habjanec L, Halassy B, Tomasić J. Liposome ...
  • 40. Copland MJ, Rades T, Davies NM, Baird MA. Lipid ...
  • 41. Ignatius R, Mahnke K, Rivera M, Hong K, Isdell ...
  • 42. London E. How principles of domain formation in model ...
  • 43. Pralle A, Keller P, Florin EL, Simons K, Hörber ...
  • 44. Lonez C, Vandenbranden M, Ruysschaert JM. Cationic liposomal lipids: ...
  • 45. Ballou LR, Laulederkind SJ, Rosloniec EF, Raghow R. Ceramide ...
  • 46. Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. ...
  • 47. El Alwani M, Wu BX, Obeid LM, Hannun YA. ...
  • 48. Chalfant CE, Spiegel S. Sphingosine 1-phosphate and ceramide 1-phosphate: ...
  • 49. Ohanian J, Ohanian V. Sphingolipids in mammalian cell signalling. ...
  • 50. Martinova EA. Influence of sphingolipids on T lymphocyte activation. ...
  • 51. Pettus BJ, Chalfant CE, Hannun YA. Sphingolipids in inflammation: ...
  • 52. Li SY, Chen C, Zhang HQ, Guo HY, Wang ...
  • 53. Xu Y, Casey G, Mills GB. Effect of lysophospholipids ...
  • 54. Hauser JM, Buehrer BM, Bell RM. Role of ceramide ...
  • 55. Feng Z, Lai Y, Ye H, Huang J, Xi ...
  • 56. Choi CM, Lerner EA. Leishmaniasis as an emerging infection. ...
  • 57. Nixon GF. Sphingolipids in inflammation: pathological implications and potential ...
  • 58. Bartlett G.R. Phosphorous assay in column chromatography. J Biol ...
  • نمایش کامل مراجع