ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Year: 1398
COI: JR_MCIJO-4-1_001
Language: EnglishView: 65
This Paper With 10 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 10 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Ayoub Adinehvand - Electrical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran
Gholamreza Karimi - Electrical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran
Mozafar Kazaei - Reproduction Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

Abstract:

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, and also follow-up evaluation. Manual segmentation of a large volume of MRI data is a time-consuming endeavor, and this necessitates employing automatic segmentation techniques that are both accurate and reliable. However, the vast spatial and structural diversity of brain tissue poses serious challenges for this procedure. The current study proposed an automatic segmentation method based on convolutional neural networks (CNN), where weights of a pre-trained network were used as initial weights of neurons to prevent possible overfitting in the training phase. Methods: As tumors were diverse in their shape, size, location, and overlapping with other tissue, it was decided to exploit a flexible and extremely efficient architecture tailored to glioblastoma. To remove some of the overlapping difficulties, morphological operators as a pre-processing step were utilized to strip the skull. Results: The proposed CNN had a hierarchical architecture to exploit local and global contextual features to handle both high- and low-grade glioblastoma. To address biasing stem from the imbalance of tumor labels, dropout was employed and a stochastic pooling layer was proposed. Conclusions: Experimental results reported on a dataset of 400 brain MR images suggested that the proposed method outperformed the currently published state-of-the-art approach in terms of various image quality assessment metrics and achieved magnitude fold speed-up.

Keywords:

Paper COI Code

This Paper COI Code is JR_MCIJO-4-1_001. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1150117/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Adinehvand, Ayoub and Karimi, Gholamreza and Kazaei, Mozafar,1398,A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI,https://civilica.com/doc/1150117

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • 1. Balafar MA, Ramli AR, Saripan MI, Mashohor S. Review of ...
  • 2. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, ...
  • 3. Lemieux L, Hagemann G, Krakow K, Woermann FG. Fast, accurate, ...
  • 4. Tang H, Wu E, Ma Q, Gallagher D, Perera G, ...
  • 5. Zhang D-Q, Chen S-C. A novel kernelized fuzzy c-means algorithm ...
  • 6. Mortazavi D, Kouzani AZ, Soltanian-Zadeh H. Segmentation of multiple sclerosis ...
  • 7. Clark MC, Hall LO, Goldgof DB, Velthuizen R, Murtagh FR, ...
  • 8. Kabir Y, Dojat M, Scherrer B, Forbes F, Garbay C, ...
  • 9. Roy S, Butman JA, Chan L, Pham DL, editors. TBI ...
  • 10. Zhang N, Ruan S, Lebonvallet S, Liao Q, Zhu Y. ...
  • 11. Liu Z, Cao C, Ding S, Liu Z, Han T, ...
  • 12. Dev KB, Jogi PS, Niyas S, Vinayagamani S, Kesavadas C, ...
  • 13. Bengio Y, Courville A, Vincent P. Representation learning: A review ...
  • 14. Krizhevsky A, Sutskever I, Hinton GE, editors. Imagenet classification with ...
  • 15. Buvat I, Lazaro D. Monte Carlo simulations in emission tomography ...
  • 16. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality ...
  • 17. Dehshibi MM, Sourizaei M, Fazlali M, Talaee O, Samadyar H, ...
  • 18. Yazdani D, Arabshahi A, Sepas-Moghaddam A, Dehshibi MM, editors. A ...
  • 19. Wang L, Lai HM, Barker GJ, Miller DH, Tofts PS. ...
  • 20. Pachai C, Zhu Y, Grimaud J, Hermier M, Dromigny-Badin A, ...
  • 21. Anbeek P, Vincken KL, Van Osch MJ, Bisschops RH, Van ...
  • 22. Menze BH, Van Leemput K, Lashkari D, Weber M-A, Ayache ...
  • 23. Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, ...
  • 24. Admasu F, Al-Zubi S, Toennies K, Bodammer N, Hinrichs H, ...
  • 25. Udupa JK, Wei L, Samarasekera S, Miki Y, van Buchem ...
  • 26. Shen S, Szameitat AJ, Sterr A. Detection of infarct lesions ...
  • 27. Metaxas DN, Qian Z, Huang X, Huang R, Chen T, ...
  • 28. Cai H, Verma R, Ou Y, Lee S-k, Melhem ER, ...
  • 29. Bach Cuadra M, Pollo C, Bardera A, Cuisenaire O, Villemure ...
  • 30. Yang F, Jiang T, Zhu W, Kruggel F, editors. White ...
  • 31. Dehshibi MM, Pons G, Baiani B, Masip D. VICSOM: VIsual ...
  • 32. Ciresan D, Giusti A, Gambardella LM, Schmidhuber J, editors. Deep ...
  • 33. Urban G, Bendszus M, Hamprecht F, Kleesiek J. Multi-modal brain ...
  • 34. Zikic D, Ioannou Y, Brown M, Criminisi A. Segmentation of ...
  • 35. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, ...
  • 36. Goodfellow IJ, Warde-Farley D, Lamblin P, Dumoulin V, Mirza M, ...
  • 37. Xing EP, Jordan MI, Russell S, editors. A generalized mean ...
  • 38. Webster JG, Eren H. Measurement, instrumentation, and sensors handbook: spatial, ...
  • 39. Ramin M, Sepas-Moghaddam A, Ahmadvand P, Dehshibi MM, editors. Counting ...
  • 40. Dehshibi MM, Alavi SM, editors. Generic Visual Recognition on Non-Uniform ...
  • 41. Warfield SK, Zou KH, Wells WM. Simultaneous truth and performance ...
  • 42. Freifeld O, Greenspan H, Goldberger J. Multiple sclerosis lesion detection ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم
    این Paper در بخشهای موضوعی زیر دسته بندی شده است:

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Scientometrics

    The specifications of the publisher center of this Paper are as follows:
    Type of center: دانشگاه دولتی
    Paper count: 9,814
    In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support