A Hybrid Method for Industrial Robot Navigation

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 227

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JOIE-14-2_024

تاریخ نمایه سازی: 17 فروردین 1400

Abstract:

Robot navigation in dynamic unknown environments is a challenging issue in the field of autonomous mobile robot control. This paper presents a hybrid robust method for navigating an industrial robot in an environment that contains dynamic obstacles. The objectives are to find the shortest path, to minimize the energy consumption of robot, to make the smoothness of the generated paths and to tackle dynamic obstacles. Robots employed in industrial environments demand considerable autonomy and require high level of accuracy and manoeuvrability at the same time. Besides, no collision is tolerable along the way. A single-objective optimization method based on path criteria fails to satisfy all of the requirements. This paper proposes a hybrid algorithm including the whale optimization algorithm (WOA) for path planning, a learnable function approximation network for making smoothness of the generated paths and a fuzzy logic controller to avoid obstacle collision. In this algorithm, WOA optimizes the best path to be taken from the start to goal position. Once a sequence of points is candidate and segments of path are merged, a radial basis function is trained to provide a smooth movement path in the dynamic environment while trying to maximize the safety margin. To further improve the safety of navigation, a fuzzy-based obstacle avoidance algorithm is executed when the robot is placed in the vicinity of an obstacle. Fuzzy decisions are made based on values of distance information. The proposed hybrid method for path planning and obstacle avoidance issues was implemented and evaluated in dynamic environments including specific shaped obstacles. A GUI-based simulation platform was designed in Matlab environment for testing the proposed algorithm. Implementation results indicate that the proposed algorithm has yielded in smooth non-marginal goal-directed navigation with acceptable performance metrics. Meanwhile, collisions to dynamic obstacles were adaptively and non-rigidly avoided. Such a model-free hybrid algorithm for path planning and obstacle avoidance can improve autonomy in industrial operation and decrease computational complexity.

Authors

Somayeh Raiesdana

Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • AbuBaker, A. (2012). A novel mobile robot navigation system using ...
  • Barbehenn, M. (1998). A note on the complexity of Dijkstra’s ...
  •  Borenstein, J., Koren, Y. (1991). The vector field histogram-fast obstacle ...
  • Castellano, G., Attolico, G., Distante A. (1997). Automatic generation of ...
  • Ceballos, N.D.M., Valencia, J.A., and Ospina, N.L. (2010). Quantitative performance ...
  • Dao, T.K., Pan, T.S. and Pan, J.S. (2016). A multi-objective ...
  • Deng, X., Milios, E. (1996). Landmark selection strategies for path ...
  • Dezfoulian, S.H. (2011). A generalized neural network approach to mobile ...
  • Dugarjav, B., Kim, H., Lee, S-G (2015). Online cell decomposition ...
  • Fox, D., Burgard, W., Thrun, S. (1997). The dynamic window ...
  • Fujii, T., Arai, Y., Asama, H., Endo, I. (1998), Multilayered ...
  • Ganapathy, V., Yun, S. C., and Ng, J. (2009).  Fuzzy ...
  • Ge, S.S., Cui, Y. J. (2000). New potential functions for ...
  • Groen, F.C.A. (2000). A virtual target approach for resolving the ...
  • Huji, D.,  Croft,  E.A.,  Zak,  G.,  Fenton R.G.,  Mills, J.K.,   ...
  • Joshi, M. M., Zaveri, M. (2010). Neuro-fuzzy based autonomous mobile ...
  • Kumar, A., Kumar, Priyadarshi Biplab, K., Parhi Dayal, R. (2018). ...
  • Kumar, M. P., Rishna K. P., Dayal Manfis, R. P. ...
  • Li, T. and Latombe, J. (1997). Online manipulation planning for ...
  • Masehian, E. and Sedighizadeh, D. (2013). An improved particle swarm ...
  • Mirjalili, S., Lewis, A. (2016). The whale optimization algorithm. Advances ...
  • Mohanty, P. K., Parhi, D. R. (2013). Path planning strategy ...
  • Mohanty, P. K. and Parhi, D. R. (2015). A new ...
  • Ng, J., Bräunl, T. (2007). Performance comparison of bug navigation ...
  • Oscar, M., Ulises, O-R., Roberto, S. (2015). Path planning for ...
  • Patle, B.K., Babu, G., Pandey, A., Parhi, D.R.K., Jagadeesh, A. ...
  • Patle, BK, Parhi, DRK, Jagadeesh, A, Kashyap, S. K. (2016). ...
  • Raiesdana, S., HashemiGoplayegani, S.M. (2013). Study on chaos anti-control for ...
  • Ravankar, A., Ravankar, A., Kobayashi, Y., Hoshino, Y. and Peng, ...
  • Silva, C., Crisostomo, M., Ribeiro, B. (2000), MONODA: a neural ...
  • Singh, M.K., Parhi, D.R. (2011). Path optimization of a mobile ...
  • Singh, M. K., Parhi, D. R., Pothal, J. K. (2009). ...
  • Tsui, W., Masmoudi, M. S., Karray, F. (2008). Soft-computing-based embedded ...
  • Vukosavjev, S., Kukolj, D., Papp, I., Markoski, B. (2011). Mobile ...
  • Wooden, D. T. (2006). Graph-based path planning for mobile robots, ...
  • Zafar, M. N., Mohanta, J. C. (2018). Methodology for path ...
  • Zavlangas, P. G., Tzafestas, S. G. (2000). Industrial robot navigation ...
  • Zavlangas, P.G., Tzafestas, S.G. (2003). Motion control for mobile robot ...
  • نمایش کامل مراجع