A Provably Secure Variant of ETRU Based on Extended Ideal Lattices Over Direct Product of Dedekind Domains
Publish place: Journal of Computing and Security، Vol: 5، Issue: 1
Publish Year: 1397
نوع سند: مقاله ژورنالی
زبان: English
View: 323
This Paper With 22 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JCSE-5-1_003
تاریخ نمایه سازی: 21 فروردین 1400
Abstract:
Jarvis and Nevins presented ETRU in 2013 which has applausive performance with moderate key-sizes and conjectured resistance to quantum computers. ETRU, as an efficient NTRUEncrypt-like cryptosystem, is over the ring of Eisenstein integers that is faster with smaller keys for the same or better level of security than does NTRUEncrypt which is a desirable alternative to public-key cryptosystems based on factorisation and discrete logarithm problem. However, because of its construction, doubts have regularly arisen on its security. In this paper, we propose how to modify ETRU to make it provably secure, under our modified assumption of quantum hardness of standard worst-case lattice problems, restricted to extended ideal lattices related to some extensions of cyclotomic fields structures. We describe the structure of all generated polynomial rings of quotient over direct product of Dedekind domains Z and Z[ζ3], where ζ3 is complex cube root of unity. We give a detailed description to show that if the private key polynomials of the ETRU are selected from direct product of some Dedekind domains using discrete Gaussians, then the public key, which is their ratio, is statistically indistinguishable from uniform over its range. The security then proves for our main system from the already proven hardness of the R-SIS and R-LWE problems by their extensions.
Keywords:
Authors
Reza Ebrahimi Atani
Department of Computer Engineering, University of Guilan, P. O. Box ۳۷۵۶, Rasht, Iran.
Shahabaddin Ebrahimi Atani
Department of Mathematics, University of Guilan, P. O. Box ۱۹۱۴, Rasht, Iran.
Amir Hassani Karbasi
Department of Mathematics, University of Guilan, P. O. Box ۱۹۱۴, Rasht, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :