Predictive modeling of the length of prepared CNT by CVD through ANN-MPSO and GEP

Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 196

This Paper With 15 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JPST-5-4_003

تاریخ نمایه سازی: 5 اردیبهشت 1400

Abstract:

Floating catalyst chemical vapor deposition (FC-CVD) is considered as one of the most appropriate techniques for the preparation of carbon nanotubes (CNTs) on the industrial scale. This paper tried to model the length of CNTs prepared by FC-CVD using two approaches, i.e. gene expression programs and hybrid artificial neural networks. In this regard, the effect of various FC-CVD parameters, viz. temperature, time, preheat temperature, Ar gas flow, methane gas flow, ethylene gas flow, Al۲O۳ catalyst, and Fe catalyst, on the length of CNTs, were investigated. At first, a hybrid artificial neural network-modified particle swarm optimization strategy (ANN-MPSO) has been used to model the CNTs length as a function of practical variables. In the next step, the same modeling of the problem was done using gene expression programming (GEP) instead of ANN-MPSO. The accuracy of the developed hybrid ANN-MPSO and GEP models was compared with regard to the linear combination of mean absolute percentage error and correlation coefficient as criteria. The results confirmed that the ANN model upgraded by the meta-heuristics strategy could be effectively applied for an accurate predictive model in the estimation of the length of CNTs as a function of the most important practical FC-CVD parameters. Also, the sensitivity analysis confirmed that the precursor type of carbon (including CH۴ and C۲H۴) and the preheat temperature have the highest and the least effect on the length of CNTs, respectively.

Keywords:

Authors

Morteza Khosravi

Department of Materials Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Malihe Zeraati

Department of Materials Science and Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • [1] R. Zhang, Q. Wen, W. Qian, D.S. Su, Q. ...
  • [2] B.C. Edwards, Design and deployment of a space elevator, ...
  • [3] N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G.A. ...
  • [4] H. Zhu, X.S. Li, B. Jiang, C.L. Xu, Y.F. ...
  • [5] H. Lange, M. Sioda, A. Huczko, Y.Q. Zhu, H.W. ...
  • [6] M.V. Antisari, R. Marazzi, R. Krsmanovic, Synthesis of multiwall ...
  • [7] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. ...
  • [8] W. Liu, S.-P. Chai, A.R. Mohamed, U. Hashim, Synthesis ...
  • [9] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of ...
  • [10] P. Harris, Carbon Nanotubes and Related Structures, Cambridge University ...
  • [11] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 ...
  • [12] P.P. Wulan, T.P.J. Silaen, Synthesis of ACNT on quartz ...
  • [13] Y. Li, G. Xu, H. Zhang, T. Li, Y. ...
  • [14] Q. Wen, R. Zhang, W. Qian, Y. Wang, P. ...
  • [15] G.-Y. Xiong, D. Wang, Z. Ren, Aligned millimeter-long carbon ...
  • [16] W. Zhou, Z. Han, J. Wang, Y. Zhang, Z. ...
  • [17] Q. Li, X.F. Zhang, R.F. DePaula, L.X. Zheng, Y.H. ...
  • [18] E. Einarsson, Y. Murakami, M. Kadowaki, S. Maruyama, Growth ...
  • [19] E.R. Meshot, D.L. Plata, S. Tawfick, Y. Zhang, E.A. ...
  • [20] B.H. Choi, H. Yoo, Y.B. Kim, J.H. Lee, Effects ...
  • [21] G.D. Nessim, A. Al-Obeidi, H. Grisaru, E.S. Polsen, C.R. ...
  • [22] M.Z. Naghadehi, M. Samaei, M. Ranjbarnia, V. Nourani, State-of-the-art ...
  • [23] A.H. Gandomi, A.H. Alavi, S. Kazemi, M. Gandomi, Formulation ...
  • [24] E. Momeni, R. Nazir, D.J. Armaghani, H. Maizir, Prediction ...
  • [25] A. Shafaei, G.R. Khayati, A predictive model on size ...
  • [26] M.M. Jafari, G.R. Khayati, M. Hosseini, H. Danesh-Manesh, Modeling ...
  • [27] K. Patra, A.K. Jha, T. Szalay, J. Ranjan, L. ...
  • [28] V. Rajamohan, R. Sedaghati, S. Rakheja, Optimum design of ...
  • [29] M. Zeraati, G.R. Khayati, N. Materials, Optimization of micro ...
  • [30] P. Zhu, S. Zhou, J. Zhen, Y. Li, Application ...
  • [31] J. Kennedy, R. Eberhart, Particle swarm Optimization, in Proceedings ...
  • [32] R.R. Karri, J. Sahu, Modeling and optimization by particle ...
  • [33] S. Du, W. Li, K. Cao, A learning algorithm ...
  • [34] X.H. Shi, Y.H. Lu, C.G. Zhou, H.P. Lee, W.Z. ...
  • [35] G.-G. Wang, A.H. Gandomi , X.-S. Yang, A.H. Alavi, ...
  • [36] J.R. Koza, Genetic Programming II, Automatic Discovery of Reusable ...
  • [37] İ. Karahan, R. Özdemir, A new modeling of electrical ...
  • [38] A.H. Gandomi, D.A. Roke, Assessment of artificial neural network ...
  • [39] S.N. Sivanandam, S.N. Deepa, Genetic algorithm optimization problems, in ...
  • [40] M.İ. Coşkun, İ.H. Karahan, Modeling corrosion performance of the ...
  • [41] Y. Benjamini, Opening the box of a boxplot, Am. ...
  • [42] B. Tiryaki, Predicting intact rock strength for mechanical excavation ...
  • [43] A.R. Sayadi, M.R. Khalesi, M.K. Borji, A parametric cost ...
  • [44] A.R. Sayadi, A. Lashgari, J.J. Paraszczak, Hard-rock LHD cost ...
  • [45] H.F. Kaiser, An index of factorial simplicity, Psychometrika, 39 ...
  • [46] R.S. Faradonbeh, M. Monjezi, Prediction and minimization of blast-induced ...
  • [47] O. Nerushev, S. Dittmar, R.-E. Morjan, F. Rohmund, E.E.B. ...
  • [48] R. Morjan, O.A. Nerushev, M. Sveningsson, F. Rohmund, L.K.L. ...
  • [49] M. Kumar, Y. Ando, Chemical vapor deposition of carbon ...
  • [50] F. Ding, P. Larsson, J.A. Larsson, R. Ahuja, H. ...
  • نمایش کامل مراجع