ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Epileptic Electroencephalogram Classification using Relative Wavelet Sub-Band Energy and Wavelet Entropy

Year: 1400
COI: JR_IJE-34-1_009
Language: EnglishView: 57
This Paper With 7 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 7 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

S. Hadiyoso - School of Applied Science, Telkom University, Bandung, Indonesia
I. D. Irawati - School of Applied Science, Telkom University, Bandung, Indonesia
A. Rizal - School of Electrical Engineering, Telkom University, Bandung, Indonesia

Abstract:

Epilepsy is one of the common neurological disorders which can cause unprovoked seizures. Currently, diagnosis and evaluation are carried out using electroencephalogram (EEG) signal analysis, which is performed visually by clinicians. Since EEG signals tend to be random and non-stationary, the visual inspection often provides misrepresentation of results. Numerous studies have been proposed computer-based analysis for epileptic EEG classification; however, there is still a gap to improve detection accuracy with a small number of features. Therefore, in this study, we proposed an automatic detection protocol for epileptic EEG classification. The proposed methods are relative wavelet energy and wavelet entropy for feature extraction and combined with the classifier method for automatic detection. In this study, three classes of EEG consisted of pre-ictal, ictal, and interictal were used as test data and also evaluate the proposed method. EEG signals were decomposed using wavelet transform into five conventional sub-bands, including gamma, beta, alpha, theta, and delta. The relative energy and entropy were then calculated in each of these bands as a feature set. These methods are chosen with consider of low-cost computing. We tested the performance of our feature extraction method using Support Vector Machine (SVM), both linear and non-linear kernels. From the simulation, the highest accuracy was ۸۰-۹۶.۷% for ictal vs. pre-ictal, ictal vs. inter-ictal, pre-ictal vs. inter-ictal, and ictal vs. non-ictal. Finally, this work was expected to help clinicians in the detection of epilepsy onset based on EEG signals.

Keywords:

Paper COI Code

This Paper COI Code is JR_IJE-34-1_009. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1185358/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Hadiyoso, S. and Irawati, I. D. and Rizal, A.,1400,Epileptic Electroencephalogram Classification using Relative Wavelet Sub-Band Energy and Wavelet Entropy,https://civilica.com/doc/1185358

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Krook-Magnuson, E. and Soltesz, I. "Beyond the hammer and the ...
  • Malmivuo, J. and Plonsey, R., Bioelectromagnetism - Principles and Applications ...
  • Acharya, U. R., Hagiwara, Y., Deshpande, S. N., Suren, S., ...
  • Faust, O., Acharya, U. R., Adeli, H., and Adeli, A. ...
  • Khanmohammadi, S. and Chou, C. A. “Adaptive Seizure Onset Detection ...
  • Carney, P. R., Myers, S. and Geyer, J. D. “Seizure ...
  • Altunay, S., Telatar, Z. and Erogul, O. “Epileptic EEG detection ...
  • Sugianela, Y., Sutino, Q. L. and Herumurti, D. “Eeg Classification ...
  • Guo, L., Rivero, D., Seoane, J. A., and Pazos, A. ...
  • Sik, H. H., Gao, J., Fan, J., Wu, B. W. ...
  • Adeli, H., Zhou, Z. and Dadmehr, N. “Analysis of EEG ...
  • Lee, S. H., Lim, J. S., Kim, J. K., Yang, ...
  • Dwi Saputro, I. R., Maryati, N. D., Solihati, S. R., ...
  • Fereydouni, A. R., Charmin, A., Vahdati, H., and Aghdam, H. ...
  • Khoshnood, A. M., Khaksari, H., Roshanian, J., & Hasani, S. ...
  • Kehtarnavaz, N. Digital Signal Processing System Design. Academic Press, 2008. ...
  • Gandhi, T., Panigrahi, B. K. and Anand, S. “A comparative ...
  • Swami, P., Gandhi, T. K., Panigrahi, B. K., Tripathi, M., ...
  • Swami, P., Gandhi, T. K., Panigrahi, B. K., Bhatia, M., ...
  • Irawati, I. D., Hadiyoso, S. and Hariyani, Y. S. “Multi-wavelet ...
  • Awad, M. and Khanna, R. Support Vector Machines for Classification. ...
  • Hadiyoso, S., Wijayanto, I., Rizal, A., and Aulia, S. “Biometric ...
  • Martisius, I., Damasevicius, R., Jusas, V., and Birvinskas, D. “Using ...
  • Wijayanto, I., Rizal, A. and Hadiyoso, S. “Multilevel Wavelet Packet ...
  • Zamanian, H. and Farsi, H. “A new feature extraction method ...
  • Cortes, C. and Vapnik, V. Support-Vector Networks in Machine Learning, ...
  • Weng, W. C., Jiang, G. J. A., Chang, C. F., ...
  • Sharma, M., Bhurane, A. A. and Rajendra Acharya, U. “MMSFL-OWFB: ...
  • Gupta, A., Singh, P. and Karlekar, M. “A novel signal ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support