ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Provision of an Optimal Strategy to Forecast the Prices Set by the Electricity Market in the Competitive Iranian Energy Market in Fall

Year: 1400
COI: JR_IJE-34-1_017
Language: EnglishView: 107
This Paper With 13 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 13 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

S. M. Kavoosi Davoodi - Department of Industrial Engineering, Science and Research Branch, Islamic Azad university, Tehran, Iran
S. E. Najafi - Department of Industrial Engineering, Science and Research Branch, Islamic Azad university, Tehran, Iran
F. Hosseinzadeh Lotfi - Department of Mathematics, Science and Research Branch, Islamic Azad university, Tehran, Iran
H. Mohammadiyan - Department of Industrial Engineering, Mazandaran University of Science and Technology Branch, Babol, Iran

Abstract:

Given the complexities of the electricity market, various factors, such as uncertainties, the ways upon which the markets are set, how the debts are settled, the market structure and regulations, production prices, constraints governing the units and networks, etc. are influential in determining the optimal pricing strategies. Various methods and models have been presented to resolve the pricing issue in the competitive electricity industry. The most prominent of which include pricing methods are based on the prediction of competitors’ behavior; also pricing methods based on the forecasts of market price, methods based on the game theory and lastly, pricing methods based on the intelligent algorithms. Therefore, this study was conducted to provide an optimal strategy in order to forecast the electricity market price set in the competitive Iranian electricity market (based on the data collected). In this paper, the proposed method uses a compound network based on the neural networks. The analyzed data include the amount of the consumed energy as well as temperature (if applicable) and the price set for the past days and weeks. The self-organizing map (SOM) network was used for the input clustering based on the similar days. A number of multilayer perceptron (MLP) neural networks were used to combine the extracted data consisting of the energy levels, the price set, and temperature (if possible). The results showed improvements in the performance of the smart systems based on the neural networks in predicting the electricity prices.

Keywords:

Paper COI Code

This Paper COI Code is JR_IJE-34-1_017. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1185366/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Kavoosi Davoodi, S. M. and Najafi, S. E. and Hosseinzadeh Lotfi, F. and Mohammadiyan, H.,1400,Provision of an Optimal Strategy to Forecast the Prices Set by the Electricity Market in the Competitive Iranian Energy Market in Fall,https://civilica.com/doc/1185366

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • 1.     Lin, L., Cunshan, Z., Vittayapadung, S., Xiangqian, S., and ...
  • 2.     Dhinesh, B., Maria Ambrose Raj, Y., Kalaiselvan, C., and ...
  • 3.     Vigneswaran, R., Annamalai, K., Dhinesh, B., and Krishnamoorthy, R., ...
  • 4.     Dhinesh, B., and Annamalai, M., "A study on performance, ...
  • 5.     Nomura, N., Inaba, A., Tonooka, Y., and Akai, M., ...
  • 6.     Sánchez de la Nieta, A., González, V., and Contreras, ...
  • 7.     Najafi, A., Falaghi, H., Contreras, J., and Ramezani, M., ...
  • 8.     Yang, P., Tang, G., and Nehorai, A., "A game-theoretic ...
  • 9.     Yang, Z., Ce, L., and Lian, L., "Electricity price ...
  • 10.   Wang, D., Luo, H., Grunder, O., Lin, Y., and ...
  • 11.   Abedinia, O., Amjady, N., Shafie-Khah, M., and Catalão, J. ...
  • 12.   Lago, J., De Ridder, F., Vrancx, P., and De ...
  • 13.   Weron, R., (, October 1)"Electricity price forecasting: A review ...
  • 14.   Lago, J., De Ridder, F., and De Schutter, B., ...
  • 15.   Wang, J., Liu, F., Song, Y., and Zhao, J., ...
  • 16.   Bento, P. M. R., Pombo, J. A. N., Calado, ...
  • 17.   Ghasemi, A., Shayeghi, H., Moradzadeh, M., and Nooshyar, M., ...
  • 18.   Mirakyan, A., Meyer-Renschhausen, M., and Koch, A., "Composite forecasting ...
  • 19.   Tian, L., and Noore, A., "Short-term load forecasting using ...
  • 20.   Ansari, M., and Amoli, M. T., "Optimal pricing strategy ...
  • 21.   Panapakidis, I. P., and Dagoumas, A. S., "Day-ahead electricity ...
  • 22.   Sandhu, H. S., Fang, L., and Guan, L., "Forecasting ...
  • 23.   Ortiz, M., Ukar, O., Azevedo, F., and Múgica, A., ...
  • 24.   Keles, D., Scelle, J., Paraschiv, F., and Fichtner, W., ...
  • 25.   Singh, N., Mohanty, S. R., and Dev Shukla, R., ...
  • 26.   Itaba, S., and Mori, H., "A Fuzzy-Preconditioned GRBFN Model ...
  • 27.   Tang, L., Yu, L., He, K., “A novel data-characteristic-driven ...
  • 28.   Chai, J., Zhang, Z. Y., Wang, S. Y., Lai, ...
  • 29.   Diongue, A. K., Guégan, D., and Vignal, B., "Forecasting ...
  • 30.   Girish, G. P., "Spot electricity price forecasting in Indian ...
  • 31.   Zhang, J., and Tan, Z., "Day-ahead electricity price forecasting ...
  • 32.   Yan, X., and Chowdhury, N. A., "Mid-term electricity market ...
  • 33.   Zhu, B., Chevallier, J., Zhu, B., and Chevallier, J., ...
  • 34.   He, K., Yu, L., and Tang, L., "Electricity price ...
  • 35.   Qiu, X., Suganthan, P. N., and Amaratunga, G. A. ...
  • 36.   Mirzayian Dezfuli, I., and Nikukar, J., "Assessment of electricity ...
  • 37.   Vahidi, A., and Tofighi, M. H., "Simultaneous forecast of ...
  • 38.   Nasiri Ghusheh Bolagh, M., "Short-term electricity price forecast using ...
  • 39.   Shayeghi, H., and Ghasemi, A., "Daily electricity price forecast ...
  • 40.   Meng, L., Hossain, M. U., Farzana, S., and Thengolose, ...
  • 41.   Neshat, N., "An Approach of Artificial Neural Networks Modeling ...
  • 42.   Ahmadi, E., Abooie, M. H., Jasemi, M., and Mehrjardi, ...
  • 43.   Neshat, N., Amin-Naseri, M. R., and Ganjavi, H. S., ...
  • 44.   Khedmati, M., Seifi, F., and Azizi, M. J., "Time ...
  • 45.   Kavoosi Davoodi, S. M., Najafi, S. E., Hosseinzadeh Lotfi, ...
  • 46.   Bagheri, F., Ziaratban, M., and Tarokh, M. J., "Predicting ...
  • 47.   Kohani, S., and Zong, P., "A Genetic Algorithm for ...
  • 48.           Purohit, I., and Purohit, P., "Inter-comparability of solar radiation ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم
    این Paper در بخشهای موضوعی زیر دسته بندی شده است:

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Scientometrics

    The specifications of the publisher center of this Paper are as follows:
    Type of center: Azad University
    Paper count: 34,889
    In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support