MicroRNAs may provide new strategies in the treatment and diagnosis of diabetic retinopathy: Importance of VEGF

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 345

This Paper With 13 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJBMS-24-3_002

تاریخ نمایه سازی: 6 اردیبهشت 1400

Abstract:

Diabetic retinopathy (DR) is ocular microvascular complications of diabetes mellitus. Along with the increasing prevalence of diabetes worldwide, DR has come into the major cause of human blindness. Several studies have demonstrated the important roles of the expression alteration in the proteins contributed to vascular dysfunction during DR, especially vascular endothelial growth factor (VEGF). However, there is a need for further mechanistic research in this context to design new therapeutic and diagnostic programs. MicroRNAs (miRNAs, miRs) have been introduced as key controllers of gene expression in a variety of biological processes including differentiation, proliferation, and metabolism. Altered expression of miRNAs during DR development indicates a close relationship between these regulatory molecules and DR through regulating gene expressions. This review discusses and updates the functions of miRNA-dependent pathways and key roles of VEGF in the DR, which may increase our understanding and ability to target these small but important molecules to efficiently improve therapeutic and diagnostic approaches.

Authors

Vahid Akbari Korhkheyli

Department of Clinical Biochemistry and Medical Genetics, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

Mohammad Amir Mishan

Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abbas Khonakdar Tarsi

Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

Abdolkarim Mahrooz

Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

Mozhgan Rezaei Kanavi

Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Ali Hafezi-Moghadam

Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women’s Hospital, Boston, Massachusetts, USA

Abouzar Bagheri

Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • 1. Zhang L, Chen B, Tang L. Metabolic memory: mechanisms ...
  • 2. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski ...
  • 3. Gudla S, Tenneti D, Pande M, Tipparaju SM. Diabetic ...
  • 4. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski ...
  • 5. Hussein KA, Choksi K, Akeel S, Ahmad S, Megyerdi ...
  • 6. Dhoot DS, Baker K, Saroj N, Vitti R, Berliner ...
  • 7. Noda K, Nakao S, Zandi S, Sun D, Hayes ...
  • 8. D’Amico AG, Maugeri G, Rasà DM, La Cognata V, ...
  • 9. Zhou Z, Ju H, Sun M, Chen H. Serum ...
  • 10.    Gong Q, Su G. Roles of miRNAs and long ...
  • 11.    Hosseini SM, Soltani BM, Tavallaei M, Mowla SJ, Tafsiri ...
  • 12.    Mishan MA, Tabari MAK, Zargari M, Bagheri A. MicroRNAs ...
  • 13.    Mahrooz A, Mackness M, Bagheri A, Ghaffari-Cherati M, Masoumi ...
  • 14.    Cho N, Shaw J, Karuranga S, Huang Y, da ...
  • 15.    Lamparter J, Raum P, Pfeiffer N, Peto T, Höhn ...
  • 16.    Zhang H, Jia L, Hou X, Lu J, Lu ...
  • 17.    Brownlee M. Biochemistry and molecular cell biology of diabetic ...
  • 18.    Kowluru RA, Kowluru A, Mishra M, Kumar B. Oxidative ...
  • 19.    Koleva-Georgieva DN, Sivkova NP, Terzieva D. Serum inflammatory cytokines ...
  • 20.    Barber AJ, Gardner TW, Abcouwer SF. The significance of ...
  • 21.    Simo R, Hernandez C. Neurodegeneration in the diabetic eye: ...
  • 22.    Hammes H-P. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. ...
  • 23.    Shokri Y, Variji A, Nosrati M, Khonakdar-Tarsi A, Kianmehr ...
  • 24.    Rübsam A, Parikh S, Fort P. Role of inflammation ...
  • 25.    Abcouwer SF, Gardner TW. Diabetic retinopathy: loss of neuroretinal ...
  • 26.    Klaassen I, Van Noorden CJ, Schlingemann RO. Molecular basis ...
  • 27.    Stitt AW, Curtis TM, Chen M, Medina RJ, McKay ...
  • 28.    Thomas AA, Feng B, Chakrabarti S. ANRIL: a regulator ...
  • 29.    Hoffmann S, Friedrichs U, Eichler W, Rosenthal A, Wiedemann ...
  • 30.    Platt DH, Bartoli M, El-Remessy AB, Al-Shabrawey M, Lemtalsi ...
  • 31.    Gao G, Li Y, Zhang D, Gee S, Crosson ...
  • 32.    He H, Venema VJ, Gu X, Venema RC, Marrero ...
  • 33.    Behzadian MA, Windsor LJ, Ghaly N, Liou G, Tsai ...
  • 34.    Caldwell RB, Bartoli M, Behzadian MA, El-Remessy AE, Al-Shabrawey ...
  • 35.    Ishida S, Usui T, Yamashiro K, Kaji Y, Amano ...
  • 36.    Rousseau S, Houle F, Landry J, Huot J. p38 ...
  • 37.    Gong C-Y, Lu B, Sheng Y-C, Yu Z-Y, Zhou ...
  • 38.    Zhang ZH, Chen QZ, Jiang F, Townsend TA, Mao ...
  • 39.    Ma Y, Zhang Y, Zhao T, Jiang Y-r. Vascular ...
  • 40.    Ghalehnoei H, Bagheri A, Fakhar M, Mishan MA. Circulatory ...
  • 41.    Chipman LB, Pasquinelli AE. miRNA targeting: Growing beyond the ...
  • 42.    Akbari Kordkheyli V, Khonakdar Tarsi A, Mishan MA, Tafazoli ...
  • 43.    Mishan MA, Tabari MAK, Parnian J, Fallahi J, Mahrooz ...
  • 44.    Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe ...
  • 45.    El Ouaamari A, Baroukh N, Martens GA, Lebrun P, ...
  • 46.    Kong L, Zhu J, Han W, Jiang X, Xu ...
  • 47.    Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre ...
  • 48.    Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin ...
  • 49.    Xiong F, Du X, Hu J, Li T, Du ...
  • 50.    Zampetaki A, Willeit P, Burr S, Yin X, Langley ...
  • 51.    Hua Z, Lv Q, Ye W, Wong C-KA, Cai ...
  • 52.    Qin B, Liu J, Liu S, Li B, Ren ...
  • 53.    Dasare AP, Gondaliya P, Srivastava A, Kalia K. A ...
  • 54.    Ito T, Yang M, May WS. RAX, a cellular ...
  • 55.    Silva VA, Polesskaya A, Sousa TA, Corrêa VM, André ...
  • 56.    Lin X, Zhou X, Liu D, Yun L, Zhang ...
  • 57.    Zhang J, Zeng Y, Chen J, Cai D, Chen ...
  • 58.    Zhang LQ, Cui H, Wang L, Fang X, Su ...
  • 59.    Fouda AY, Artham S, El-Remessy AB, Fagan SC. Renin–angiotensin ...
  • 60.    Kovacs B, Lumayag S, Cowan C, Xu S. MicroRNAs ...
  • 61.    Zeng J, Xiong Y, Li G, Liu M, He ...
  • 62.    Usui-Ouchi A, Ouchi Y, Kiyokawa M, Sakuma T, Ito ...
  • 63.    Lou H, Wang S, Guo T, Yang Y. Role ...
  • 64.    Chen Q, Qiu F, Zhou K, Matlock HG, Takahashi ...
  • 65.    Báez-Vega PM, Vargas IME, Valiyeva F, Encarnación-Rosado J, Roman ...
  • 66.    Jiang Q, Lv X-M, Yuan Y, Wang L. Plasma ...
  • 67.    Hou Q, Tang J, Wang Z, Wang C, Chen ...
  • 68.    Hou Q, Zhou L, Tang J, Ma N, Xu ...
  • 69.    He L, He X, Lowe SW, Hannon GJ. microRNAs ...
  • 70.    Thounaojam MC, Jadeja RN, Warren M, Powell FL, Raju ...
  • 71.    Mortuza R, Feng B, Chakrabarti S. miR-195 regulates SIRT1-mediated ...
  • 72.    Tang WX, Wu WH, Zeng XX, Bo H, Huang ...
  • 73.    Zhang R, Garrett Q, Zhou H, Wu X, Mao ...
  • 74.    Liu P, Peng QH, Tong P, Li WJ. Astragalus ...
  • 75.    Wang J, Zhang J, Chen X, Yang Y, Wang ...
  • 76.    Ye Z, Li ZH, He SZ. miRNA-1273g-3p involvement in ...
  • 77.    O’connell RM, Kahn D, Gibson WS, Round JL, Scholz ...
  • 78.    Yang T, Song S, Xue H, Shi D, Liu ...
  • 79.    Zou H-L, Wang Y, Gang Q, Zhang Y, Sun ...
  • 80.    Zhang ZZ, Qin XH, Zhang J. MicroRNA-183 inhibition exerts ...
  • 81.    Qian C, Liang S, Wan G, Dong Y, Lu ...
  • 82.    Mao XB, Cheng YH, Xu YY. miR‑204‑5p promotes diabetic ...
  • 83.    Shao J, Fan G, Yin X, Gu Y, Wang ...
  • 84.    Cui C, Li Y, Liu Y. Down-regulation of miR-377 ...
  • 85.    Ke N, Pi LH, Liu Q, Chen L. Long ...
  • 86.    Zhao S, Li T, Li J, Lu Q, Han ...
  • 87.    McArthur K, Feng B, Wu Y, Chen S, Chakrabarti ...
  • 88.    Gomaa AR, Elsayed ET, Moftah RF. MicroRNA-200b expression in ...
  • 89.    Ruiz MA, Feng B, Chakrabarti S. Polycomb repressive complex ...
  • 90.    Li EH, Huang QZ, Li GC, Xiang ZY, Zhang ...
  • 91.    Murray AR, Chen Q, Takahashi Y, Zhou KK, Park ...
  • 92.    Jiang Q, Zhao F, Liu X, Li R, Liu ...
  • 93.    Ding Y, Hu Z, Luan J, Lv X, Yuan ...
  • 94.    Feng B, Chen S, McArthur K, Wu Y, Sen ...
  • 95.    Ye E-A, Steinle JJ. miR-146a suppresses STAT3/VEGF pathways and ...
  • 96.    Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-κB-dependent ...
  • 97.    Cowan C, Muraleedharan CK, O’Donnell JJ, Singh PK, Lum ...
  • 98.    Wang Q, Bozack SN, Yan Y, Boulton ME, Grant ...
  • 99.    Zhuang P, Muraleedharan CK, Xu S. Intraocular delivery of ...
  • 100. Fulzele S, El-Sherbini A, Ahmad S, Sangani R, Matragoon ...
  • 101. Samra YA, Saleh HM, Hussein KA, Elsherbiny NM, Ibrahim ...
  • 102. Gong Q, Xie Jn, Li Y, Liu Y, Su ...
  • 103. Wang Y, Yan H. MicroRNA-126 contributes to Niaspan treatment ...
  • 104. Bai Y, Bai X, Wang Z, Zhang X, Ruan ...
  • 105. Ye P, Liu J, He F, Xu W, Yao ...
  • 106. Heirani-Tabasi A, Mirahmadi M, Mishan MA, Naderi-Meshkin H, Toosi ...
  • 107. Heirani-Tabasi A, Toosi S, Mirahmadi M, Mishan MA, Bidkhori ...
  • 108. Mazzeo A, Beltramo E, Iavello A, Carpanetto A, Porta ...
  • 109. Rezk NA, Sabbah NA, Saad MS. Role of microRNA ...
  • 110. Ye E-A, Steinle JJ. miR-15b/16 protects primary human retinal ...
  • 111. Liu H, Meng Y, Ren Y, Sun P. MicroRNA-15b ...
  • 112. Ye E-A, Liu L, Jiang Y, Jan J, Gaddipati ...
  • 113. Wang Q, Navitskaya S, Chakravarthy H, Huang C, Kady ...
  • 114. Galicia JC, Naqvi AR, Ko C-C, Nares S, Khan ...
  • 115. Xu Y, Xie S, Ma Y. Low expression of ...
  • 116. Gong Q, Li F, Su G. Up-regulated VEGF and ...
  • 117. Liu P, Jia S-B, Shi J-M, Li W-J, Tang ...
  • 118. Deng H-f, Wang S, Wang X-l, Li L, Xie ...
  • 119. Dai C, Gong Q, Cheng Y, Su G. Regulatory ...
  • 120. Boyerinas B, Park S-M, Hau A, Murmann AE, Peter ...
  • 121. Xia X, Ahmad I. let-7 microRNA regulates neurogliogenesis in ...
  • 122. Zhou Q, Frost RJ, Anderson C, Zhao F, Ma ...
  • 123. Dai C, Jiang S, Chu C, Xin M, Song ...
  • 124. Zhang J, Cui C, Xu H. Down-regulation of miR-145-5p ...
  • 125. Zhao R, Qian L, Jiang L. miRNA-dependent cross-talk between ...
  • 126. Ling S, Birnbaum Y, Nanhwan MK, Thomas B, Bajaj ...
  • 127. Tang X, Dai Y, Wang X, Zeng J, Li ...
  • 128. Liu C-H, Sun Y, Li J, Gong Y, Tian ...
  • 129. Chen P, Miao Y, Yan P, Wang XJ, Jiang ...
  • 130. Dong N, Wang Y. MiR-30a regulates S100A12-induced retinal microglial ...
  • 131. Thames BE, Barr JW, Suchodolski JS, Steiner JM, Heilmann ...
  • 132. Shao J, Pan X, Yin X, Fan G, Tan ...
  • 133. Wu J-h, Wang Y-h, Wang W, Shen W, Sang ...
  • نمایش کامل مراجع