ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Nilpotent graphs of skew polynomial rings over non-commutative rings

Year: 1399
COI: JR_COMB-9-1_004
Language: EnglishView: 26
This Paper With 8 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 8 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Mohammad Javad Nikmehr - K.N.Toosi University
Abdolreza Azadi - ‎K‎. ‎N‎. ‎Toosi University of Technology

Abstract:

Let $R$ be a ring and $\alpha$ be a ring endomorphism of $R$‎. ‎The undirected nilpotent graph of $R$‎, ‎denoted by $\Gamma_N(R)$‎, ‎is a graph with vertex set $Z_N(R)^*$‎, ‎and two distinct vertices $x$ and $y$ are connected by an edge if and only if $xy$ is nilpotent‎, ‎where $Z_N(R)=\{x\in R\;|\; xy\; \rm{is\; nilpotent,\;for\; some}\; y\in R^*\}.$ In this article‎, ‎we investigate the interplay between the ring theoretical properties of a skew polynomial ring $R[x;\alpha]$ and the graph-theoretical properties of its nilpotent graph $\Gamma_N(R[x;\alpha])$‎. ‎It is shown that if $R$ is a symmetric and $\alpha$-compatible with exactly two minimal primes‎, ‎then $diam(\Gamma_N(R[x,\alpha]))=۲$‎. ‎Also we prove that $\Gamma_N(R)$ is a complete graph if and only if $R$ is isomorphic to $\Z_۲\times\Z_۲$‎.

Keywords:

Paper COI Code

This Paper COI Code is JR_COMB-9-1_004. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1194854/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Nikmehr, Mohammad Javad and Azadi, Abdolreza,1399,Nilpotent graphs of skew polynomial rings over non-commutative rings,https://civilica.com/doc/1194854

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Scientometrics

The specifications of the publisher center of this Paper are as follows:
Type of center: دانشگاه دولتی
Paper count: 10,706
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support