Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

بهبود عملکرد روش KNN در پیش بینی جریان ورودی به سد با استفاده از روش های هوش مصنوعی

ششمین همایش و نمایشگاه سد و تونل ایران
Year: 1399
COI: DTCE06_014
Language: PersianView: 149
This Paper With 9 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 9 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

احسان ابراهیمی - کارشناس ارشد، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی
مجتبی شوریان - استادیار، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی

Abstract:

پیش بینی جریان آب یکی از مهمترین بخش های مدیریت منابع آب می باشد. پیش بینی های دقیق در بلند مدت برایبرنامه ریزی تامین و ذخیره سازی آب و در کوتاه مدت برای پیش بینی جریان های شدید و استفاده آن در سیستم هایهشدار سیل حائز اهمیت می باشد. مدل های داده مبنا به عنوان روش هایی نسبتا ساده اما قدرتمند به طور گسترده برایپیش بینی جریان آب استفاده می شوند. روش K همسایه نزدیک (KNN) یک روش یادگیری غیر پارامتری موثر استکه در حل مسائل مختلف مورد استفاده قرار می گیرد. در این پژوهش، یک روش جدید برای انتخاب همسایه ها به نامK همسایه نزدیک پویا (DKKN) معرفی شده که با استفاده از یک مدل SVM فواصل بهینه ای یافته شده وهمسایگانی که در این فاصله بهینه وجود دارند برای هر مورد پیش بینی استفاده می شوند. عملکرد روش پیشنهادی بابه کارگیری ۲ سال داده ورودی روزانه سد قشلاق در غرب ایران مورد ارزیابی قرار گرفته است. نتایج نشان می دهد روشپیشنهادی دقت پیش بینی را با کاهش خطای کلی (RMSE) به میزان ۶%، بهبود می دهد که این بهبود در پیش بینیموارد حدی به ۷/۸% می رسد.

Keywords:

Paper COI Code

This Paper COI Code is DTCE06_014. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1197932/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
ابراهیمی، احسان و شوریان، مجتبی،1399،بهبود عملکرد روش KNN در پیش بینی جریان ورودی به سد با استفاده از روش های هوش مصنوعی،The sixth conference and exhibition of Iran Dam and Tunnel،Tehran،https://civilica.com/doc/1197932

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Scientometrics

The specifications of the publisher center of this Paper are as follows:
Type of center: دانشگاه دولتی
Paper count: 25,404
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

New Papers

New Researchs

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support