Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

IRVD: A Large-Scale Dataset for Classification of Iranian Vehicles in Urban Streets

مجله هوش مصنوعی و داده کاوی، دوره: 9، شماره: 1
Year: 1400
COI: JR_JADM-9-1_001
Language: EnglishView: 137
This Paper With 10 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 10 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

H. Gholamalinejad - Faculty of Electrical Engineering and Robotics, Shahrood University of Technology, Shahrood, Iran.
H. Khosravi - Faculty of Electrical Engineering and Robotics, Shahrood University of Technology, Shahrood, Iran

Abstract:

In recent years, vehicle classification has been one of the most important research topics. However, due to the lack of a proper dataset, this field has not been well developed as other fields of intelligent traffic management. Therefore, the preparation of large-scale datasets of vehicles for each country is of great interest. In this paper, we introduce a new standard dataset of popular Iranian vehicles. This dataset, which consists of images from moving vehicles in urban streets and highways, can be used for vehicle classification and license plate recognition. It contains a large collection of vehicle images in different dimensions, viewing angles, weather, and lighting conditions. It took more than a year to construct this dataset. Images are taken from various types of mounted cameras, with different resolutions and at different altitudes. To estimate the complexity of the dataset, some classic methods alongside popular Deep Neural Networks are trained and evaluated on the dataset. Furthermore, two light-weight CNN structures are also proposed. One with ۳-Conv layers and another with ۵-Conv layers. The ۵-Conv model with ۱۵۲K parameters reached the recognition rate of ۹۹.۰۹% and can process ۴۸ frames per second on CPU which is suitable for real-time applications.

Keywords:

Paper COI Code

This Paper COI Code is JR_JADM-9-1_001. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1200285/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Gholamalinejad, H. and Khosravi, H.,1400,IRVD: A Large-Scale Dataset for Classification of Iranian Vehicles in Urban Streets,https://civilica.com/doc/1200285

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • H. O. S. D. Branch, “Imagery library for intelligent detection ...
  • Y. Peng, J. S. Jin, S. Luo, M. Xu, and ...
  • Z. Dong, M. Pei, Y. He, T. Liu, Y. Dong, ...
  • H. S. Bharadwaj, S. Biswas, and K. Ramakrishnan, “A large ...
  • M. Biglari, A. Soleimani, and H. Hassanpour, “Using discriminative part ...
  • J. Sochor, J. Špaňhel, and A. Herout, “Boxcars: Improving fine-grained ...
  • R. Asgarian Dehkordi and H. Khosravi, “Vehicle Type Recognition based ...
  • “SATPA license plate recognition library. ” https://shahaab-co.ir/license-plate-recognition-library/ (accessed 2020/04/20 ...
  • J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You ...
  • N. Dalal and B. Triggs, “Histograms of oriented gradients for ...
  • R. Dechter, Learning while searching in constraint-satisfaction problems. University of ...
  • K. Simonyan and A. Zisserman, “Very deep convolutional networks for ...
  • C. Francois, “Deep learning with Python," ed: Manning Publications Company, ...
  • K. He, X. Zhang, S. Ren, and J. Sun, “Deep ...
  • J. Redmon. “Darknet: Open Source Neural Networks. ”https://github.com/pjreddie/darknet (accessed 2020/04/24 ...
  • J. Redmon and A. Farhadi, “Yolov3: An incremental improvement, ” ...
  • F. Branchaud-Charron, A. Achkar, and P.-M. Jodoin, “Spectral metric for ...

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Scientometrics

The specifications of the publisher center of this Paper are as follows:
Type of center: دانشگاه دولتی
Paper count: 8,555
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support