On New Extensions of Hermite-Hadamard Inequalities for Generalized Fractional Integrals
عنوان مقاله: On New Extensions of Hermite-Hadamard Inequalities for Generalized Fractional Integrals
شناسه ملی مقاله: JR_SCMA-18-1_006
منتشر شده در در سال 1400
شناسه ملی مقاله: JR_SCMA-18-1_006
منتشر شده در در سال 1400
مشخصات نویسندگان مقاله:
Huseyin Budak - Department of Mathematics, Faculty of Science and Arts, Duzce University, Duzce, Turkey
Ebru Pehlivan - Department of Mathematics, Faculty of Science and Arts, Duzce University, Duzce, Turkey
Pınar Kosem - Department of Mathematics, Faculty of Science and Arts, Duzce University, Duzce, Turkey
خلاصه مقاله:
Huseyin Budak - Department of Mathematics, Faculty of Science and Arts, Duzce University, Duzce, Turkey
Ebru Pehlivan - Department of Mathematics, Faculty of Science and Arts, Duzce University, Duzce, Turkey
Pınar Kosem - Department of Mathematics, Faculty of Science and Arts, Duzce University, Duzce, Turkey
In this paper, we establish some Trapezoid and Midpoint type inequalities for generalized fractional integrals by utilizing the functions whose second derivatives are bounded . We also give some new inequalities for k-Riemann-Liouville fractional integrals as special cases of our main results. We also obtain some Hermite-Hadamard type inequalities by using the condition f^{\prime }(a+b-x)\geq f^{\prime }(x) for all x\in \left[ a,\frac{a+b}{۲}\right] instead of convexity.
کلمات کلیدی: Hermite-Hadamard inequality, convex function, Bounded function
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1221125/