Second Module Cohomology Group of Induced Semigroup Algebras
عنوان مقاله: Second Module Cohomology Group of Induced Semigroup Algebras
شناسه ملی مقاله: JR_SCMA-18-2_005
منتشر شده در در سال 1400
شناسه ملی مقاله: JR_SCMA-18-2_005
منتشر شده در در سال 1400
مشخصات نویسندگان مقاله:
Mohammad Reza Miri - Faculty of Mathematics Science and Statistics, University of Birjand, Birjand ۹۷۱۷۸۵۱۳۶۷, Birjand, Iran.
Ebrahim Nasrabadi - Faculty of Mathematics Science and Statistics, University of Birjand, Birjand ۹۷۱۷۸۵۱۳۶۷, Birjand, Iran.
Kianoush Kazemi - Faculty of Mathematics Science and Statistics, University of Birjand, Birjand ۹۷۱۷۸۵۱۳۶۷, Birjand, Iran.
خلاصه مقاله:
Mohammad Reza Miri - Faculty of Mathematics Science and Statistics, University of Birjand, Birjand ۹۷۱۷۸۵۱۳۶۷, Birjand, Iran.
Ebrahim Nasrabadi - Faculty of Mathematics Science and Statistics, University of Birjand, Birjand ۹۷۱۷۸۵۱۳۶۷, Birjand, Iran.
Kianoush Kazemi - Faculty of Mathematics Science and Statistics, University of Birjand, Birjand ۹۷۱۷۸۵۱۳۶۷, Birjand, Iran.
For a discrete semigroup S and a left multiplier operator T on S, there is a new induced semigroup S_{T}, related to S and T. In this paper, we show that if T is multiplier and bijective, then the second module cohomology groups \mathcal{H}_{\ell^۱(E)}^{۲}(\ell^۱(S), \ell^{\infty}(S)) and \mathcal{H}_{\ell^۱(E_{T})}^{۲}(\ell^۱({S_{T}}), \ell^{\infty}(S_{T})) are equal, where E and E_{T} are subsemigroups of idempotent elements in S and S_{T}, respectively. Finally, we show thet, for every odd n\in\mathbb{N}, \mathcal{H}_{\ell^۱(E_{T})}^{۲}(\ell^۱(S_{T}),\ell^۱(S_{T})^{(n)}) is a Banach space, when S is a commutative inverse semigroup.
کلمات کلیدی: second module cohomology group, inverse semigroup, induced semigroup, semigroup algebra
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1224167/