عنوان مقاله:
Improved Mechanical and Biological Properties of Biodegradable Composites Based on Bioactive Glass and Tragacanth

محل انتشار:
 هفتمين كنفرانس بين المللى مواد كاميوزيتى: ساخت، خواص و كاربرد (سال: 1399)
 تعداد صفحات اصل مقاله: 3

نويسندكان:
S Borhan, - Assistant Professor, Department of Chemical and Materials Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran

S Hamzavi Taleqani, - Bachelor student, Department of Chemical and Materials Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran

S Farahani - Assistant Professor, Department of Chemical and Materials Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran

Abstract

خلاصه مقاله: The primary aim of this study was to fabricate bioactive glass-tragacanth composite scaffold with improved mechanical strength using glycidoxypropyltrimethoxysilane (GPTMS) as a crosslinker. Composites were prepared by mixing melt-derived bioactive glass with r and F wt. \% solution of tragacanth at a powder to liquid ratio of I.Q. Microstructure and compressive strength were evaluated. Weight loss and in vitro apatite formation of samples were investigated after immersion the scaffolds in simulated body fluid (SBF). SEM micrographs revealed that incorporation of GPTMS resulted in a more compacted microstructure. Sample with F wt. \% cross-linked tragacanth had the highest compressive strength. Weight loss and leaching were decreased with network compaction from lo. Y to f. fr . Moreover, a bone-like apatite layer is precipitated on the surface of scaffolds immersed for If days in SBF which indicate their .bioactivity. Overall, the produced composite scaffolds may be appropriate for bone tissue replacement

كلمات كليدى
bioactive glass composites, crosslinker, GPTMS, tragacanth

