ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Forecasting the Tehran Stock market by Machine ‎Learning Methods using a New Loss Function

Year: 1400
COI: JR_AMFA-6-2_001
Language: EnglishView: 95
This Paper With 11 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 11 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Mahsa Tavakoli - Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
Hassan Doosti - Department of Mathematics and Statistics, Macquarie University, Sydney, Australia

Abstract:

Stock market forecasting has attracted so many researchers and investors that ‎many studies have been done in this field. These studies have led to the ‎development of many predictive methods, the most widely used of which are ‎machine learning-based methods. In machine learning-based methods, loss ‎function has a key role in determining the model weights. In this study a new loss ‎function is introduced, that has some special features, making the investing in the ‎stock market more accurate and profitable than other popular techniques. To ‎assess its accuracy, a two-stage experiment has been designed using data of ‎Tehran Stock market. In the first part of the experiment, we select the most ‎accurate algorithm among some of the well-known machine learning algorithms ‎based on artificial neural network, ANN, support vector machine, SVM. In the ‎second stage of the experiment, the various popular loss functions are compared ‎with the proposed one. As a result, we introduce a new neural network using a ‎new loss function, which is trained based on genetic algorithm. This network has ‎been shown to be more accurate than other well-known and common networks ‎such as long short-term memory (LSTM) for both train and test data.‎

Keywords:

Paper COI Code

This Paper COI Code is JR_AMFA-6-2_001. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1241241/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Tavakoli, Mahsa and Doosti, Hassan,1400,Forecasting the Tehran Stock market by Machine ‎Learning Methods using a New Loss Function,https://civilica.com/doc/1241241

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Murphy, J., Technical Analysis of the Financial Markets, New York ...
  • Huber, Peter J., Robust Estimation of a Location Parameter, Annals ...
  • Vapnik, V., Golowich, S. E. and A. J. Smola, A. ...
  • Hsu, S., Hsieh, J., Chih, T., and Hsu, K., A ...
  • Kim, K., Financial time series forecasting using support vector machines, ...
  • Cao, Q., Leggio, K. B., and Schniederjans, M.J., A comparison ...
  • Manish, k., and Thenmozhi, M., Forecasting stock index movement: A ...
  • Matyjaszek, M., Fernández, P. R., Krzemień, A., Wodarski, K. and ...
  • Zhong, X., Enke, D., Predicting the daily return direction of ...
  • Etebar, S., Darabi, R., Hamidiyan, M., and Jafari, S.M., Evaluation ...
  • Davoodi Kasbi, A., Dadashi, I., Stock price prediction using the ...
  • Dorsey, R.E., Mayer, W.J., Genetic algorithms for estimation problems with ...
  • Research Info Management

    Certificate | Report | من نویسنده این مقاله هستم
    این Paper در بخشهای موضوعی زیر دسته بندی شده است:

    اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    Scientometrics

    The specifications of the publisher center of this Paper are as follows:
    Type of center: دانشگاه دولتی
    Paper count: 31,090
    In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

    Share this page

    More information about COI

    COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

    The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

    Support