Effect of Radiative Filling Gas in Compound Parabolic Solar Energy Collectors
Publish place: Iranica Journal of Energy and Environment، Vol: 12، Issue: 3
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 247
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJEE-12-3_001
تاریخ نمایه سازی: 12 مرداد 1400
Abstract:
In the present paper, the use of radiating gas instead of air inside the cavity of compound parabolic collectors (CPSs) is suggested and verified by numerical analysis. The collector under study has a simple cone shape with flat absorber which is filled with a participating gas such as carbon dioxide instead of air for the purpose of increasing the thermal performance. In numerical simulation, the continuity, momentum and energy equations for the steady natural convection laminar gas flow in the CPC’s cavity and the conduction equation for glass cover and absorber plate were solved by the finite element method (FEM) using the COMSOL multi-physics. Because of the radiative term in the gas energy equation, the intensity of radiation in participating gas flow should be computed. Toward this end, the radiative transfer equation (RTE) was solved by the discrete ordinate method (DOM), considering both diffuse and collimated radiations. The approximation was employed in calculation of the diffuse part of radiation. It was observed that the gas radiation causes high temperature with more uniform distribution inside the cavity of collector. Also, numerical results reveal more than ۳% increase in the rate of heat transfer from absorber surface into working fluid and hence a desired performance for the collector because of the gas radiation effect. Comparison between the present numerical results with theoretical and experimental data reported in the literature showed good consistency.
Keywords:
Authors
S. A. Gandjalikhan Nassab
Department of Mechanical Engineering, School of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
M. Moein Addini
Department of Mechanical Engineering, School of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :