Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Distribution of energy in propagation for ocean extreme wave generation in hydrodynamics laboratory

فصلنامه جهانی علوم و مدیریت محیط زیست، دوره: 8، شماره: 1
Year: 1401
COI: JR_GJESM-8-1_002
Language: EnglishView: 65
This Paper With 10 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 10 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

D. Fadhiliani - Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh ۲۳۱۱۱, Indonesia
M. Ikhwan - Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh ۲۳۱۱۱, Indonesia
M. Ramli - Department of Mathematics, Universitas Syiah Kuala, Banda Aceh ۲۳۱۱۱, Indonesia
S. Rizal - Department of Marine Sciences, Universitas Syiah Kuala, Banda Aceh ۲۳۱۱۱, Indonesia
M. Syafwan - Department of Mathematics, Universitas Andalas, Padang ۲۵۱۶۳, Indonesia

Abstract:

BACKGROUND AND OBJECTIVES: The hydrodynamic uncertainty of the ocean is the reason for testing marine structures as an initial consideration. This uncertainty has an impact on the natural structure of the topography as well as marine habitats. In the hydrodynamics laboratory, ships and offshore structures are tested using mathematical models as input to the wave marker. For large wavenumbers, Benjamin Bona Mahony's equation has a stable direction and position in the wave tank. During their propagation, the generated waves exhibit modulation instability and phase singularity phenomena. These two factors refer to Benjamin Bona Mahony as a promising candidate for generating extreme waves in the laboratory. The aim of this research is to investigate the distribution of energy in each modulation frequency change. The Hamiltonian formula that describes the phenomenon of phase singularity is used to observe energy. This data is critical in determining the parameters used to generate extreme waves.METHODS: The envelope of the Benjamin Bona Mahony wave group can be used to study the Benjamin Bona Mahony wave. The Benjamin Bona Mahony wave group is known to evolve according to the Nonlinear Schrodinger equation. The Hamiltonian governs the dynamics of the phase amplitude and proves the Nonlinear Schrodinger equation's singularity for finite time. The Hamiltonian is derived from the appropriate Lagrangian for Nonlinear Schrodinger and then transformed into the Hamiltonian  with the displaced phase-amplitude variable.FINDINGS: Potential energy is related to wave amplitude and kinetic energy is related to wave steepness in the study of surface water waves. When , the maximum wave amplitude and steepness are obtained. When , extreme waves cannot be formed due to steepness. This is due to the possibility of breaking waves into smaller waves on the shore. In terms of position, the energy curve is symmetrical.CONCLUSION: According to Hamiltonian's description of the energy distribution, the smaller the modulation frequency, the greater the potential and kinetic energy involved in wave propagation, and vice versa. While the wave's amplitude and steepness will be greatest for a low modulation frequency, and vice versa. The modulation frequency considered as an extreme wave generator is , because the resulting amplitude is quite high and the energy in the envelope is also quite large.

Keywords:

Paper COI Code

This Paper COI Code is JR_GJESM-8-1_002. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1259895/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Fadhiliani, D. and Ikhwan, M. and Ramli, M. and Rizal, S. and Syafwan, M.,1401,Distribution of energy in propagation for ocean extreme wave generation in hydrodynamics laboratory,https://civilica.com/doc/1259895

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • Akhmediev, N.N.; Ankiewicz, A., (۱۹۹۷). Solitons-nonlinear pulses and beams. Chapmann ...
  • Andonowati; Karjanto, N.; van Groesen, E., (۲۰۰۷). Extreme wave phenomena ...
  • Benjamin, T.B.; Feir, J.E., (۱۹۶۷). The disintegration of wave trains ...
  • Benjamin, T.B.; Bona, J.L.; Mahony, J.J., (۱۹۷۲). Model equations for ...
  • Conforti, M.; Mussot, A.; Kudlinski, A.; Trillo, S.; Akhmediev, N., ...
  • Dean, R.G., (۱۹۹۰). Freak waves: A possible explanation. In: Torum ...
  • Debnath, L., (۲۰۱۲). Nonlinear partial differential equations for scientists and ...
  • Didenkulova, E., (۲۰۲۰). Catalogue of rogue waves occurred in the ...
  • Fadhiliani, D.; Ramli, M.; Rizal, S.; Syafwan, M., (۲۰۱۹). Wave ...
  • Fadhiliani, D.; Halfiani, V.; Ikhwan, M.; Qausar, H.; Munzir, S.; ...
  • González-Gaxiola, O.; Biswas, A., (۲۰۱۸). Akhmediev breathers, peregrine solitons and ...
  • Halfiani, V.; Salmawaty; Ramli, M., (۲۰۱۷). An envelope equation of ...
  • Halfiani, H.; Fadhiliani, D.; Mardi, H.A.; Ramli, M., (۲۰۱۸). Nonlinear ...
  • Horn, D.A.; Imberger, J.; Ivey, G.N., (۱۹۹۹). Internal solitary waves ...
  • Hu, Z.; Tang, W.; Xu, H.; Zhang, X., (۲۰۱۴). Numerical ...
  • Ikhwan, M.; Wafdan, R.; Haditiar, Y.; Ramli, M.; Muchlisin, Z.A.; ...
  • Karjanto, N., (۲۰۰۶). Mathematical aspects of extreme water waves. University ...
  • Karjanto, N.; van Groesen, E., (۲۰۰۷). Note on wavefront dislocation ...
  • Karjanto, N.; van Groesen, E., (۲۰۱۰). Qualitative comparisons of experimental ...
  • Karjanto, N.; van Groesen, E.; Peterson, P., (۲۰۱۱). Investigation of ...
  • Korteweg, D.J; de Vies, G., (۱۸۹۵). On the change of ...
  • Mahato, D.K.; Govindarajan, A; Lakshmanan, M.; Sarma, A.K., (۲۰۲۱). Dispersion ...
  • Myint-U.T.; Debnath, L., (۲۰۰۷). Linear partial differential equations for scientists ...
  • Qausar, H.; Zahara Y.; Ramli, M.; Munzir, S.; Halfiani, V., ...
  • Ren, J.; Ilhan, O.A.; Bulut, H.; Manafian, J., (۲۰۲۱). Multiple ...
  • Eisberg, R.; Resnick, R., (۱۹۸۵). Quantum Physics of Atoms, Molecules, ...
  • Samaras, A.G.; Karambas, T.V., (۲۰۲۱). Numerical simulation of ship-borne waves ...
  • Shiralashetti, S.C.; Hanaji, S.I., (۲۰۲۱). Hermite wavelet based numerical method ...
  • Slunyaev, A.; Sergeeva, A.; Pelinovsky, E., (۲۰۱۵). Wave amplification in ...
  • Sulem, C.; Sulem, P.L., (۱۹۹۹). The nonlinier schrödinger equation: self ...
  • van Groesen, E.; Andonowati; Karjanto, N., (۲۰۰۶). Displaced phase-amplitude variables ...
  • van Groesen, E.; Turnip, P.; Kurnia, R., (۲۰۱۷). High waves ...
  • Wang, J.; Ma, Q.W.; Yan, S.; Qin, H., (۲۰۱۸). Numerical ...
  • Wang, X.; Wei, J., (۲۰۲۰). Antidark solitons and soliton molecules ...
  • Waseda, T.; Tamura, H.; Kinoshita, T., (۲۰۲۱). Freakish sea index ...
  • Zhao, X.; Hu, C.; Sun, Z., (۲۰۱۰). Numerical simulation of ...
  • Zakharov, V.E.; Dyachenko, A.I.; Prokofiev, A.O., (۲۰۰۶). Freak waves as ...

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support