عنوان مقاله:<br>Developing and characterizing a single-domain antibody (nanobody) against human cytotoxic T-lymphocyte(associated protein F (hCTLA- F<br><br>تعداد صفحات اصل مقاله: 8<br>Nazli Sotoudeh - Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran<br>Zahra Noormohammadi - Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran<br>Mahdi Habibi-Anbouhi - National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran<br>Fatemeh Kazemi-Lomedasht - Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran<br>Mahdi Behdani - Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran


#### Abstract

خلاصه مقاله: Objective(s): Cytotoxic T-lymphocyte-associated protein- $\mathcal{F}$ (CTLA-F) is the most important human immune checkpoint that modulates T cells activity and brings about immune-homeostasis. Accordingly, checkpoint inhibitor cancer therapy has been approved as a growing method to block over-expressed immune checkpoints, such as CTLA-F receptors. Considering the competitive characteristics of single-domain antibodies with monoclonal antibodies, we tried to develop a camelid Nanobody against human CTLA-F. Materials and Methods: We have constructed the VHH gene library by using immunized-camel peripheral blood mononuclear cells and carrying out the Nested-PCR technique. VHH-library was screened by phage display technique and specific nanobodies against CTLA- F protein were selected and amplified with bio-panning steps. Stronger binders were screened by Periplasmic Extract-ELISA, followed by  binding rate, were selected for more assays. Results: Results revealed the existence of two different clones in the library with lo^ binders. In comparison with seven different antigens, using the ELISA technique confirmed the specificity of Nanobody HhCTLDQ against human CTLA-r antigen. We calculated Nanobody whCTLQD affinity for human CTLA-f antigen at $\omega_{\circ} \times 10-9 \mathrm{M}$, approximately. Performing western blot and Flow-cytometry techniques showed that Nanobody H CTLLA was able to specifically detect and attach both commercial human CTLA-F protein and human CTLA-F antigen on the cell surface and in the cell lysate. Conclusion: Taken together, this developed camelidspecific anti-CTLA-f Nanobody HhCTL © , selected from a high-quality immune library by phage display technique, .may be effective for further study about cancer diagnosis and cancer-therapy purposes


لينك ثابت مقاله در پايكاه سيويليكا:
https://civilica.com/doc/1269755

