ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

Genome-Scale Tissue-specific Reconstruction and Analysis of Metabolic Network in Glioblastoma multiform and Glioblastoma Stem Cells for Identification of Novel Anti-Brain Tumor Drug Targets

Year: 1400
COI: ICSB04_068
Language: EnglishView: 65
متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

Buy and Download

متن کامل (فول تکست) این مقاله منتشر نشده و یا در سایت موجود نیست و امکان خرید آن فراهم نمی باشد.

Authors

Parisa Karimizadeh - School of Pharmaceutical Sciences, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran
Meysam Mobasheri - School of Pharmaceutical Sciences, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran.Iranian Institute of New-founded Sciences (IINS;MAANA), Tehran, Iran
Tabassom Sobati - Iranian Institute of New-founded Sciences (IINS;MAANA), Tehran, Iran

Abstract:

Cancer stem cells (CSCs) are a subpopulation of tumor tissue with the ability to generate tumor cells through the process of self-renewal and differentiation to other cell types. Growing evidence suggests that cancer can be regarded as a metabolic disease and the stem-like behavior of CSCs are also highly controlled by metabolic mechanisms. Given the complexity of metabolism, a comprehensive understanding of metabolic mechanisms underlying tumorigenesis requires a systems approach. Genome-scale constraint-based metabolic models are currently the most advanced tools for quantitative characterization of metabolism. In the present study, we took a constraint-based metabolic reconstruction and analysis (COBRA) approach to develop in silico genome-scale models of glioblastoma multiform (GBM) and its stem cells to enable structural and functional characterization of metabolism in these cells. Our holistic analysis of the metabolic network reflected the current knowledge of GBM and led to identification of novel anti-tumor targets and promising drug repositioning scenarios for synergistic treatment of brain tumor malignancy.

Keywords:

Paper COI Code

This Paper COI Code is ICSB04_068. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1290933/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Karimizadeh, Parisa and Mobasheri, Meysam and Sobati, Tabassom,1400,Genome-Scale Tissue-specific Reconstruction and Analysis of Metabolic Network in Glioblastoma multiform and Glioblastoma Stem Cells for Identification of Novel Anti-Brain Tumor Drug Targets,The 4th Iranian Conference on Systems Biology,Tehran,https://civilica.com/doc/1290933

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Scientometrics

The specifications of the publisher center of this Paper are as follows:
Type of center: Azad University
Paper count: 1,022
In the scientometrics section of CIVILICA, you can see the scientific ranking of the Iranian academic and research centers based on the statistics of indexed articles.

New Papers

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support