CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

Cloning, molecular analysis and epitopics prediction of a new chaperone GroEL Brucella melitensis antigen

عنوان مقاله: Cloning, molecular analysis and epitopics prediction of a new chaperone GroEL Brucella melitensis antigen
شناسه ملی مقاله: JR_IJBMS-18-5_011
منتشر شده در در سال 1394
مشخصات نویسندگان مقاله:

Mohammad Hadi Sekhavati - Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
Reza Majidzadeh Heravi - Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
Mojtaba Tahmoorespur - Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
Soheil Yousefi - Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
Tooba Abbassi-Daloii - Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
Rahebe Akbari - Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

خلاصه مقاله:
Objective(s):Brucellosis is a well-known domestic animal infectious disease, which is caused by Brucella bacterium. GroEL antigen increases Brucella survival and is one of the major antigens that stimulates the immune system. Hence, the objective of the present study was cloning and bioinformatics analysis of GroEL gene. Materials and Methods: The full-length open reading frame of this gene was amplified by specific primers and cloned into pTZ۵۷R/T vector. Also, the sequence of this gene in the Brucella melitensis strain Rev ۱ was submitted to the NCBI gene bank for the first time. Several prediction software applications were also used to predict B and T-cell epitopes, secondary and tertiary structures, antigenicity ability and enzymatic degradation sites. The used software applications validated experimental results. Results: The results of phylogenetic analysis showed that the GroEL sequence had near homology with other species instead of other Brucella spp. The bioinformatics tools used in the current study were validated by the results of four different experimental epitope predictions. Bioinformatics analysis identified eight B and seven T-cell epitopes. Conclusion: According to the antigenic ability and proteasomal cleavage sites, four (۱۵۰-۱۶۰, ۲۷۰-۲۸۵,۳۵۱-۳۶۱ and ۳۸۵-۳۹۵) common epitopes were predicted for GroEL gene. Bioinformatics analysis showed that these regions had proper epitope characterization and so may be useful for stimulation of cell-mediated and humoral immunity system.

کلمات کلیدی:
Bioinformatics analysis, Brucella melitensis, Heat shock protein ۶۰ kDa, Subunit vaccine

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1297137/