Data-driven optimization model: Digikala case study
Publish place: 18th International Conference on Industrial Engineering
Publish Year: 1400
نوع سند: مقاله کنفرانسی
زبان: English
View: 301
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IIEC18_058
تاریخ نمایه سازی: 1 دی 1400
Abstract:
Increasing software as a service (SaaS) requires the provision of more updated models for services,so trying to develop a model customized for the customer is important. We used the linear Knapsack problem model proposed by Mike Hewitt and Emma Frejinger in ۲۰۲۰. Then historical data of Digikala was applied and shown that how the model works on it.
Keywords:
Optimization modeling , Statistical learning , Mixed integer linear programming , Thirdparty logistics
Authors
s Hamidi
Department of Industrial Engineering, Amirkabir University of Technology, Tehran ۱۵۹۱۶۳۴۳۱۱, Iran
s.m.t fatemi ghomia
Department of Industrial Engineering, Amirkabir University of Technology, Tehran ۱۵۹۱۶۳۴۳۱۱, Iran