Experimental and Numerical Research on the Formation Conditions and Entrainment Characteristics of Supercavity by Rear Jet Reflux

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 282

This Paper With 17 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-15-1_025

تاریخ نمایه سازی: 8 دی 1400

Abstract:

Aiming at better controlling the ventilated supercavity flow for drag reduction, the experimental and numerical researches of supercavity by rear gas reflux are proposed in this paper. Several experiments with different test bodies have been carried out to study the formation and collapse conditions of jet-reflux supercavity. An open-circulation water tunnel for ultra-high-speed jet experiment and air jet system is employed to form jet-reflux supercavity around the bodies installed in the forward strut. The experiment results show that the supercavity can be maintained by the reflux of tail jet flow when an initial supercavity covering the jet outlet is formed. However, the supercavity will be destroyed when the jet intensity is further enhanced. Under the same jet coefficient, the scale of jet-reflux supercavity extends as the increase of the body length, while the critical jet coefficient for the collapse of the supercavity decreases as the increase of the body length. The multiphase flow model coupling the VOF model and the level-set method is applied to capture the air-water interface. Then, the flow field characteristics of the jet-reflux supercavity are analyzed and compared with the ventilated supercavity. The streamline inside the cavity presents considerable three-dimensional asymmetry inflating flow characteristics. The variation of the gas reflux coefficient along the axial direction is obtained, which indicates that a handful of reflux gas are required to sustain the head cavity. Therefore, the jet-reflux supercavity can be formed within a certain range of the tail jet intensity. Although jet intensities are not equal to each other, the scale of cavity head is roughly maintained under the same reflux coefficient. When the supercavity gets closed to the nozzle outlet, the maximum scale of cavity is decreased, which leads to a weaker reflux at the outlet. The cavity interface will be impinged by the high-speed gas and mixture liquid, which obviously causes deformation and final collapse. In order to improve the stability of the jet-reflux supercavity, it is necessary to use the gas re-directed structure to control the reflux.

Authors

B. Liu

National University of Defense Technology, Changsha, Hunan, ۴۱۰۰۷۳, P.R. China

M. Xiang

National University of Defense Technology, College of Aerospace Science and Engineering, Changsha, Hunan, ۴۱۰۰۷۳, China

X. Zhao

National University of Defense Technology, Changsha ۴۱۰۰۷۳, P.R. China

W. Zhang

National University of Defense Technology, College of Aerospace Science and Engineering, Changsha, Hunan, ۴۱۰۰۷۳, China

J. Li

National University of Defense Technology, Changsha, Hunan, ۴۱۰۰۷۳, P.R. China

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Ahn, B. K., S. W. Jung, J. H. Kim, Y. ...
  • Balakrishna, A., S. Shao, Y. Liu and J. Hong (۲۰۱۹). ...
  • Cameron, P. J., P. H. Rogers, J. W. Doane and ...
  • Erfanian, M. R. and M. Moghiman (۲۰۲۰). Experimental investigation of ...
  • Jiang, Y., T. Bai and Y. Gao (۲۰۱۷). Formation and ...
  • Jihua, Z. B. Z. Y. Z. (۲۰۱۱). Experimental study on ...
  • Jin, D., C. Wang, Y. Wei, W. Cao, F. Yu ...
  • Karn, A. and S. Chawdhary (۲۰۱۸). On the synergistic interrelation ...
  • Karn, A., R. E. Arndt and J. Hong (۲۰۱۶). An ...
  • Kawakami, E. and R. E. Arndt (۲۰۱۱). Investigation of the ...
  • Kinzel, M. P., M. H. Krane, I. N. Kirschner and ...
  • Kinzel, M., M. Moeny, M. Krane and I. Kirschner (۲۰۱۵). ...
  • Kirschner, I. N., N. E. Fine, J. S. Uhlman, D. ...
  • Lee, S. J., E. Kawakami and R. E. Arndt (۲۰۱۳). ...
  • Menter, F. R. (۱۹۹۲). Performance of popular turbulence model for ...
  • Menter, F. R. (۱۹۹۴). Two-equation eddy-viscosity turbulence models for engineering ...
  • Menter, F. R. (۲۰۰۹). Review of the shear-stress transport turbulence ...
  • Olsson, E., G. Kreiss and S. Zahedi (۲۰۰۷). A conservative ...
  • Osher, S. and J. A. Sethian (۱۹۸۸). Fronts propagating with ...
  • Owis, F. and A. Nayfeh (۲۰۰۲). A compressible multi-phase flow ...
  • Paryshev, E. V. (۲۰۰۶). Approximate mathematical models in high-speed hydrodynamics. ...
  • Pearce, B. W. and P. A. Brandner (۲۰۱۲). Experimental investigation ...
  • Rashidi, I., Pasandideh-Fard, M., Passandideh-Fard, M. and Nouri, N. M. ...
  • Wang, W., Z. Zhang, G. He and W. Mo (۲۰۲۱). ...
  • Wang, Z., B. Huang, M. Zhang and G. Wang (۲۰۱۸). ...
  • Xiang, M., X. Zhao and H. Zhou (۲۰۲۱). Transient dynamic ...
  • Xu, C., J. Huang, Y. Wang, X. Wu, C. Huang ...
  • Yi, W. j., T. h. Xiong and Y. X. Liu ...
  • نمایش کامل مراجع