Performance Evaluation of Using Entropy Criterion in Data Fusion of Hydrological Forecasting Models
Publish Year: 1390
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,278
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCHP03_138
تاریخ نمایه سازی: 3 فروردین 1391
Abstract:
In the process of data fusion in hydrological forecasting models, in addition to highimpact of the accuracy of individual forecasting models and data fusion methods, two other sections that include selection of the best predictor variables as the input of individual forecasting models and selection of the best individual forecasting models as the input of data fusion models should also be carefully considered. The aim of thepresent study is to evaluate the degree of impact of using the two aforementioned sections on overall accuracy of data fusion in a hydrological forecasting. The method applied for use in both steps is based on entropy concepts. Here, results of the case study of forecasting maximum annual flood of Red River in Canada will be evaluatedand compared in different conditions both before and after applying filtering method. The results reveal considerable improvement of forecasting accuracy after the application of the above mentioned method in both stages.
Keywords:
Authors
Mohammad Azmi
Phd Student of Water Resources Engineering, Agricultural Technology and Engineering Faculty, University of Tehran
Shahab ARAGHINEJAD
Professor Assistant of Water Resources Engineering, Agricultural Technology and Engineering Faculty, University of Tehran
Behzad Moshiri
Professor of Control & Intelligent Processing, Center of Excellence, School of ECE, University of Tehran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :