Soil classification in a seismically active environment based on join analysis of seismic parameters

Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 172

This Paper With 18 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_GJESM-8-3_001

تاریخ نمایه سازی: 23 بهمن 1400

Abstract:

BACKGROUND AND OBJECTIVES: Soil or rock properties where buildings are situated play an important role in the ground shaking caused by an earthquake. The highly populated Banda Aceh city in the northernmost Sumatra is flanked by two active faults, the Seulimeum and the Aceh segment. Therefore, it is crucial to investigate the subsurface characteristics of the region to reduce the earthquake risk as there was no regional study has been conducted so far.METHODS: Characteristics of the soil or rock of the subsurface were derived from various seismic parameters. The seismic microtremors were recorded at ۳۶ sites covering the highly populated city and the two active faults. The spatial autocorrelation method was used to obtain a dispersion curve based on the relationship between seismic frequencies and phase velocity from triangular geophones array to determine the shear wave velocity of the subsurface layer. The seismic amplification, dominant frequency and vulnerability value at each measurement point were measured using the horizontal-to-vertical spectral ratio method. The maps of velocity structure and HVSR parameters were generated from the interpolation of those seismic parameters.FINDING: Based on the variation of the four geophysical parameters: shear wave velocity, seismic amplification, dominant frequency, and seismic vulnerability, the study area can be clustered into five different groups: I) Banda Aceh, II) Jantho, III) Krueng Raya, IV) Lhoknga-Lhoong, and V) Seulawah, which classify the different types of rocks. The classification of soil properties from the combination of shear wave and horizontal-to-vertical spectral ratio data correlates with the geology of the study area.CONCLUSION: The Banda Aceh city, flanked by the two active faults, is characterized by low shear wave velocity and high amplification because the city stands on the sedimentary basin; thus, it requires a detailed investigation prior to constructing infrastructures. The other clusters are located on the relatively less vulnerable areas, indicated by moderate shear wave velocity and moderate to low seismic vulnerability indexes. The joint analysis shows that the combination of physical properties, including the shear wave velocity, seismic amplification, and dominant frequency, can be used to investigate lithology and seismic vulnerability into a specific cluster. The research results are essential for hazard mitigation and can be used for disaster risk management by the local government. A detailed investigation with denser measurement points needs to be conducted to comprehensively describe the types of rocks in Banda Aceh and its surrounding. 

Authors

Y. Asnawi

Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh ۲۳۱۱۱,Indonesia

A.V.H. Simanjuntak

Tsunami and Disaster Mitigation Research Center, Universitas Syiah Kuala, Jl. Prof. Dr. Ibrahim Hasan, Gampong Pie, Indonesia

U. Muksin

Tsunami and Disaster Mitigation Research Center, Universitas Syiah Kuala, Jl. Prof. Dr. Ibrahim Hasan, Gampong Pie, Indonesia

M. Okubo

Natural Science Cluster, Science and Technology Unit, Kochi University, Akebono-cho Kochi, Japan

S.I. Putri

Tsunami and Disaster Mitigation Research Center, Universitas Syiah Kuala, Jl. Prof. Dr. Ibrahim Hasan, Gampong Pie, Indonesia

S. Rizal

Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh ۲۳۱۱۱, Indonesia

M. Syukri

Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Indonesia

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Alamri, A.M.; Bankher, A.; Abdelrahman, K.; El-Hadidy, M.; Zahran, H., ...
  • Arai, H.; Tokimatsu, K., (۲۰۰۵). S-wave velocity profiling by joint ...
  • Asrillah, A.; Marwan, M.; Muksin, O.; Ibnu, R.; Takao, S.; ...
  • Asten, M.W.; Askan A.; Ekincioglu E.E.; Sisman F.N.; Ugurhan B., ...
  • Barber, A.J.; Crow, M.J.; J. S. Milsom, (۲۰۰۵). Sumatra: geology, ...
  • Beroya-Eitner, M.A.; Aydin A.; Tigloa R.; Lasala M., (۲۰۰۹). Use ...
  • Bilham, R., (۲۰۰۹). The seismic future of cities. Bull. Earthquake ...
  • Boore, D.M., (۲۰۰۴). Estimating Vs (۳۰) (or NEHRP site classes) ...
  • Chávez-García, F.J.; Kang, T.S., (۲۰۱۴). Lateral heterogeneities and microtremors: limitations ...
  • Cho, I., (۲۰۱۹). Two-sensor microtremor SPAC method: potential utility of ...
  • Cho, I.; Tada, T.; Shinozaki, Y., (۲۰۰۴). A new method ...
  • Cho, I.; Tada, T.; Shinozaki, Y., (۲۰۰۶). Centerless circular array ...
  • Cho, I.; Tada, T.; Shinozaki, Y., (۲۰۰۸). A new method ...
  • Claprood, M.; Asten, M.W.; Kristek, J., (۲۰۱۲). Combining HVSR microtremor ...
  • Culshaw, M.G.; Duncan, S.V.; Sutarto, N.R., (۱۹۷۹). Engineering geological mapping ...
  • El-Hady, S.; Ferqany, E.AA.; Othman, A.; Mohamed, G.E.A., (۲۰۱۲). Seismic ...
  • Forte, G.; Chiocarelli, E.; De Falco, M; Cito, P.; Santo, ...
  • Gallipoli, M.R.; Mucciarelli, M.; Galliaccio, S.; Tropeano, M.; Lizza, C., ...
  • Goda, K.; Kiota, T.; Fokhrel, R.M.; Chiaro, G.; Katagiri, T.; ...
  • Gosar, A., (۲۰۰۷). Microtremor HVSR study for assessing site effects ...
  • Hollender, F.; Cornou, C.; Deschamp, A.; Oghalaei, K.; Renalier, F.; ...
  • Idris, Y.; Cummims, P.; Rusydy, I.; Muksin, U.; Syamsidik; Habibie, ...
  • Ito, T.; Gunawan, E.; Kimata, F.; Tabai, T. Simons, M.; ...
  • Jalil, A.; Fathani, T.F.; Satyarno, I.; Wilopo, W., (۲۰۲۰). A ...
  • Kanli, A.I.; Tildy, P.; Pronay, Z.; Pinar, A.; Hermann, L., ...
  • Maresca, R.; Nardone, L.; Gizzi, F. T.; Potenza, M. R., ...
  • Matsuoka, M.; Wakamatsu, K.; Fujimoto, K.; Midorikawa, S., (۲۰۰۶). Average ...
  • Muksin, U.; Irwandi; Rusydy, I.; Muzli; Erbas, K.; Marwan; Asrillah; ...
  • Muksin, U.; Bauer, K.; Muzli, M.; Ryberg, T.; Nurdin, I.; ...
  • Muzli, M.; Muksin, U.; Nugraha, A. D.; Bradley, K. E.; ...
  • Nakamura, Y. (۱۹۸۹). A method for dynamic characteristics estimation of ...
  • Nakamura, Y. (۱۹۹۷). Seismic vulnerability indices for ground and structures ...
  • Nakamura, Y. (۲۰۰۰). Clear identification of fundamental idea of Nakamura’s ...
  • Nakamura, Y. (۲۰۰۹). Basic structure of QTS (HVSR) and examples ...
  • Okada, H. (۲۰۰۶). Theory of efficient array observations main of ...
  • Pamuk, E.; Özdag. Ö.C.; Tuchel, A.; Özyalin, S.; Akgun, M., ...
  • Park, C.B.; Miller, R.D.; Xia, J., (۲۰۰۷). Multichannel analysis of ...
  • Parker, R.N.; Hancox, G.T.; Petley, D.N.; Messey, C.I.; Densmore, A.L.; ...
  • Rahman, M.Z.; Kamal, A.S.M.M.; Siddiqua, S., (۲۰۱۸). Near-surface shear wave ...
  • Rusydy, I.; Muksin, U.; Mulkal; Idris, Y.; Akram, M.N.; Syamsidik, ...
  • Rusydy, I.; Idris, Y.; Mulkal; Muksin, U; Cummins, P.; Akram, ...
  • Ryberg, T.; Muksin, U.; Bauer, K., (۲۰۱۶). Ambient seismic noise ...
  • Scott, J.B.; Rasmussen, T.; Luke, B.; Taylor, W.J.; Wagober, J.L.; ...
  • Sieh, K.; Natawidjaja, D., (۲۰۰۰). Neotectonics of the Sumatran fault, ...
  • Siemon, B.; Steuer, A., (۲۰۱۰). Airborne geophysical investigation of groundwater ...
  • نمایش کامل مراجع