Long-Lead Rainfall Forecasting, Using Dynamic Neural Networks: Case Study of Western Part of Iran
Publish place: 1st Iran-Korea Joint Workshop on Climate Modeling
Publish Year: 1384
نوع سند: مقاله کنفرانسی
زبان: English
View: 2,140
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IKWCM01_010
تاریخ نمایه سازی: 22 مرداد 1385
Abstract:
Application of Temporal Neural Networks in long-lead forecasting of seasonal rainfall over western part of Iran is presented. Three approaches including application of time delay operators, recurrent connections as well as a hybrid method are used to design Artificial Neural Network (ANN)-based models. Climatic variables including the difference between Sea Level Pressure (SLP) at different characteristic locations in Middle-East and Europe are used as the predictors of the models as well as the persistence between rainfall time series. The characteristic locations include some parts of Mediterranean and Black sea, Greenland, and Azores. The models are calibrated based on 31-year data of historical regional rainfall and are validated by a cross validation procedure. Further, an Auto Regressive Moving Average with eXogenous input (ARMAX) are used as the baselines for assessing the performance of the dynamic networks. The results demonstrated that all temporal neural networks especially time delay recurrent neural network perform significantly better than statistical ARMAX models in long-lead seasonal rainfall forecasting in west of Iran.
Keywords:
Authors
Mohammad Karamouz
Professor, School of Civil Engineering, University of Tehran
Sarnan Razavr
Graduate Research Assistant, School of Civil and Environmental Engineering, Amirkabir University (Tehran Polytechnic)
Shahab Araghinejad
Ph.D., School of Civil and Environmental Engineering, Amirkabir University (Tehran Polytechnic)
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :