Energy Window Selection for Bremsstrahlung ۹۰Y SPECT-CT Imaging: A Phantom Study
Publish place: Iranian Journal of Medical Physics، Vol: 19، Issue: 1
Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 182
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMP-19-1_006
تاریخ نمایه سازی: 22 اسفند 1400
Abstract:
Introduction: In Yttrium-۹۰ SPECT imaging, the energy window and collimator used during projection acquisition can significantly affect image quality. In this work, we used a new and independent method to verify previous results, which suggest suitable energy around ۱۳۰ keV. Material and Methods: We used Siemens Symbia SPECT-CT system fitted with High Energy General Purpose (HEGP), Medium Energy General Purpose (MEGP), and Low Energy High Resolution (LEHR) to acquire data from NEMA IEC PET Body Phantom filled with ۹۰Y chloride. ISO-counting curve is a new method analysed in this study to evaluate the adequate parameters for ۹۰Y SPECT imaging. Results: HEGP collimator was the most suitable for acquisitions of ۹۰Y bremsstrahlung radiation from the point of view of the correct volume reproduction. ISO-counting analyses have shown that for the bigger phantom spheres, the optimum acquisition energy is centered on ۱۳۰ keV. Conclusion: The ISO-counting curve method is consistent to previous studies’ results and can help to improve image quality.
Keywords:
Authors
Denise Curto
Physics Department, University of Trieste, Italy
Faustino Bonutti
Academic Hospital of Udine, Medical Physics Department, Italy
Youssef Bouzekraoui
Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Settat, Morocco
Farida Bentayeb
Department of Physics, LPHE, Modeling and Simulations, Faculty of Science, Mohammed V University, Rabat, Morocco
Hicham Asmi
Department of Physics, LPHE, Modeling and Simulations, Faculty of Science, Mohammed V University, Rabat, Morocco
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :