A Comparative Study on Machine Learning Algorithms for Geochemical Prediction Using Sentinel-۲ Reflectance Spectroscopy
Publish place: Journal of Mining and Environment، Vol: 12، Issue: 4
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 187
This Paper With 15 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMAE-12-4_006
تاریخ نمایه سازی: 29 فروردین 1401
Abstract:
The distribution of stream sediments is usually considered as an important and very useful tool for the early-stage exploration of mineralization at the regional scale. The collection of stream samples is not only time-consuming but also very costly. However, the advancements in space remote sensing has made it a suitable alternative for mapping of the geochemical elements using satellite spectral reflectance. In this research work, ۴۰۷ surface stream sediment samples of the zinc (Zn) and lead (Pb) elements are collected from Central Wales. Five machine learning models, namely the Support Vector Regression (SVR), Generalized Linear Model (GLM), Deep Neural Network (DNN), Decision Tree (DT), and Random Forest (RF) regression, are applied for prediction of the Zn and Pb concentrations using the Sentinel-۲ satellite multi-spectral images. The results obtained based on the ۱۰ m spatial resolution show that Zn is best predicted with RF with significant R۲ values of ۰.۷۴ (p < ۰.۰۱) and ۰.۷ (p < ۰.۰۱) during training and testing. However, for Pb, the best prediction is made by SVR with significant R۲ values of ۰.۷۲ (p < ۰.۰۱) and ۰.۶۴ (p < ۰.۰۱) for training and testing, respectively. Overall, the performance of SVR and RF outperforms the other machine learning models with the highest testing R۲ values.
Keywords:
Authors
Muhammad M.
School of Mining Engineering, University of the Witwatersrand, Johannesburg, South Africa
T. Celik
School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
B. Genc
School of Mining Engineering, University of the Witwatersrand, Johannesburg, South Africa
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :