Optimization of thermal conductivity of Al2O3 nanofluid by two methods

Publish Year: 1390
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,574

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

NCNN01_236

تاریخ نمایه سازی: 17 اردیبهشت 1391

Abstract:

Most of the heat transfer fluids such as water, ethylene glycol, and engine oil have limited heat transfer capabilities due to their low heat transfer properties. Nanofluids are suspensions of nanoparticles in basefluids, a new challenge for thermal sciences provided by nanotechnology. In this study, we are to optimize and report the effects of various parameters such as the ratio of the thermal conductivity of nanoparticles to that of a base fluid, volume fraction, nanoparticle size, and temperature on theeffective thermal conductivity of nanofluids using nonlinear optimization methods. To do this, we used MATLAB default modules for geneticalgorithm and generalized reduced gradient method. Results showed that the proposed GA method has superior performance compared togeneralized reduced gradient method. Also in this research we would like to exercises the importance of maximizing the thermal performance ofnanofluid flows under appropriate constraints. Thermal conductivity of nanofluid enhanced is increased 32 percent by using GRG method and 48percent by GA method

Authors

M Tajik

Renewable Energy Department, Materials and Energy Research Center (MERC), Karaj, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Dongsheng Zhu, Xinfang Li, Nan Wang, Xianju Wang, Jinwei Gao ...
  • Masuda, H., Ebata, _ Teramae, K., and Hishinuma, N., Alteration ...
  • Xie, H., Wang, J., Xi, T., and Liu, Y., Thermal ...
  • Das, S. K., Putra, N, Thiesen, P., and Roetzel, W., ...
  • Murshed, S. M. S., Leong, K. C., and Yang, C., ...
  • Wen, D., and Ding, Y. , Effective Thermal Conductivity of ...
  • Patel, H. E., Das, S. _ Sundararajan, T., Nair, A. ...
  • Yang, B., and Han, Z. H., T _ mp _ ...
  • _ _ _ _ _ 21. Issue 1. pp. 58-64. ...
  • Yu W, Choi S. U. S, and Drobnik (2007). Temperature ...
  • _ _ _ _ _ _ _ Society of Mechnaicat ...
  • [12] Chien H.T, Tsai C.I, Chen P. H, and Chen ...
  • Que Q, Zhang J, and Zhang Z. Sythesis, structure and ...
  • Lee, S., Choi, S. . S., Li, S., and Eastman, ...
  • Xie, H., Wang, J., Xi, T., and Ai, F., Thermal ...
  • J. Abadie & J. Carpentier, 1969, Generalization of the Wolfe ...
  • S. Lasdon, A. D. Waren, A. Jain & M Ratner, ...
  • E. Sandgren, 1981, A statistical review of the S andgren-Re ...
  • A.Haggag, _ variant of the generalized reduced gradient algorithm for ...
  • D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, ...
  • M. Gen, R. Cheng, Genetic Algorithms and Engineering Design, John ...
  • J. Holland, Genetic algorithms, Sci. Am. 5 (July) (1992) 66-72. ...
  • J. Koza, Forest Bennet, David Andre and Martin Keane, Genetic ...
  • J. Koza, M. Keane, M. Streeter, W. Mydlowec, J. Yu, ...
  • J. Koza, M. Keane, M. Streeter, Evolving inventions, Sci. Am. ...
  • S. Sato, K. Otori, A. Takizawa, H. Sakai, Y. Ando, ...
  • V. Porto, D. Fogel, L. Fogel, Alternative neural network training ...
  • K.S. Tang, K.F. Man, S. Kwong, Q. He, Genetic algorithms ...
  • Shigeru Obayashi, Daisuke Sasaki, Yukihiro Takeguchi, Naoki Hirose, Multiobjective evolutionary ...
  • E. Williams, W. Crossley, T. Lang, Average and maximum revisit ...
  • نمایش کامل مراجع