Patterning the surface roughness of a nano fibrous scaffold for transdermal drug release

Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 131

This Paper With 11 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJND-10-1_007

تاریخ نمایه سازی: 17 خرداد 1401

Abstract:

The main objective of this paper was to manipulate the Nano Fibrous Scaffold "NFS" surface roughness to achieve a new transdermal drug release profile. To assess the intrinsic mechanical properties of Nylon ۶ or polycaprolactam, such as its proper resiliency, it was considered as the matrix. Cetirizine was used as a drug model and was loaded (۱% w/v) to polymer solution (۳۰%w/v) before spinning. Two polymeric meshes with different orifices in size and geometry were used to induce roughness on the surface of two collecting NFS during the electrospinning process. They were placed in line of conventional electrospinning, here after called “Mesh Electrospinning” and hereby, two roughened NFS were fabricated: Pentagonal templated nanofibrous scaffold (PeTNFS) and tetragonal nanofibrous scaffold (TeTNFS) beside ordinary NFS (ONFS). The kinetic of drug release was compared with known models and the release of cetirizine from these new drug delivery systems was done by UV–VIS spectroscopy and its in-vitro release profile was measured using Franz cell diffusion system. Release profiles from NFS were compared with a commercially available drug delivery system. To assess the simulation of NFS effect on the skin, NFS was placed on layer of dialysis film, and after three hours, the morphology was investigated using SEM. PeTNFS sample showed the greatest trend of drug release and it was about ۲۰% more than un-roughened NFS. The best fit for drug release kinetic of NFS and TeTNFS samples were Higuchi model but it obeyed first order model for PeTNFS sample. The obtained NFS showed high potential for transdermal drug release.

Authors

Mohammad Mahdi Saadatmand

Department of Textile and Polymer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran

Mohammad Esmail Yazdanshenas

Department of Textile and Polymer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran

Ramin Khajavi

Department of Polymer & Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

Fariba Mighani

Associate Professor of Weed Research Department, Iranian Research Institute of Plant Protection, Tehran, Iran.

Tayebeh Toliyat

Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Khajavi R., Abbasipour M., Bahador A., (۲۰۱۶), Electrospun biodegradable nanofibers ...
  • Khajavi R., Abbasipour M., (۲۰۱۲), Electrospinning as a versatile method ...
  • Abbasipour M., Khajavi R., (۲۰۱۳), Nanofiber bundles and yarns production ...
  • Marsano E., Francis L., Giunco F., (۲۰۱۰), Polyamide ۶ nanofibrous ...
  • Sencadas V., Correia D. M., Areias A., Botelho G., Fonseca, ...
  • Camerlo A., Bühlmann-Popa A. M., Vebert-Nardin C., Rossi R. M., ...
  • Wang B., Wang Y., Yin T., Yu Q., (۲۰۱۰), Applications ...
  • Chakraborty S., Liao I. C., Adler A., Leong K. W., ...
  • Kenawy E. R., Bowlin G. L., Mansfield K., Layman J., ...
  • Prabaharan M., Jayakumar R., Nair S. V., (۲۰۱۱), Electrospun nanofibrous ...
  • Zhang Y., Lim C. T., Ramakrishna S., Huang Z. M., ...
  • Zamani M., Prabhakaran M. P., Ramakrishna S., (۲۰۱۳), Advances in ...
  • Boland E. D., Wnek G. E., Simpson D. G., Pawlowski ...
  • Yang F., Murugan R., Wang S., Ramakrishna S., (۲۰۰۵), Electrospinning ...
  • Matthews J. A., Wnek G. E., Simpson D. G., Bowlin ...
  • Min B. M., Lee G., Kim S. H., Nam Y. ...
  • Huang Y., Onyeri S., Siewe M., Moshfeghian A., Madihally S. ...
  • Khil M. S., Cha D. I., Kim H. Y., Kim ...
  • Ignatova M., Manolova N., Markova N., Rashkov I., (۲۰۰۹), Electrospun ...
  • Zhang N., Deng Y., Tai Q., Cheng B., Zhao L., ...
  • Hou S., Zhao L., Shen Q., Yu J., Ng C., ...
  • Zhao L., Lu Y. T., Li F., Wu K., Hou ...
  • Zong X., Kim K., Fang D., Ran S., Hsiao B. ...
  • Kenawy E. R., Bowlin G. L., Mansfield K., Layman J., ...
  • Xie J., Wang C. H., (۲۰۰۶), Electrospun micro-and nanofibers for ...
  • Mano J. F., (۲۰۰۸), Stimuli‐responsive polymeric systems for biomedical applications. ...
  • Alvarez-Lorenzo C., Concheiro A., (۲۰۱۴), Smart drug delivery systems: From ...
  • Vaquette C., Cooper-White J. J., (۲۰۱۱), Increasing electrospun scaffold pore ...
  • Wu Y., Dong Z., Wilson S., Clark R. L., (۲۰۱۰), ...
  • Zhang D., Chang J., (۲۰۰۸), Electrospinning of three-dimensional nanofibrous tubes ...
  • Wang Y., Wang G., Chen L., Li H., Yin T., ...
  • Saadatmand M. M., Yazdanshenas M. E., Khajavi R., Mighani F., ...
  • Verma J., Khandelwal A., (۲۰۱۶), Synthesis of silica nanoparticles and ...
  • Chatzēiōannou T. P., (۱۹۹۳), Quantitative calculations in pharmaceutical practice and ...
  • Bourne D. W. A., (۲۰۰۲), Pharmacokinetics. In: Banker GS, Rhodes ...
  • Higuchi T., (۱۹۶۳), Mechanism of sustained‐action medication. Theoretical analysis of ...
  • Chauhan N. P. S., Meghwal K., Juneja P., Chaudhary J., ...
  • Ho H. O., Huang F. C., Sokoloski T. D., Sheu ...
  • Khan M. I., Murtaza G., Sher M., Iqbal M., Waqas ...
  • Sultana N., Arayne M. S., Shamshad H., (۲۰۱۰), In vitro ...
  • نمایش کامل مراجع