GENERATING FUZZY RULES FOR PROTEIN CLASSIFICATION

Publish Year: 1387
نوع سند: مقاله ژورنالی
زبان: English
View: 183

This Paper With 13 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJFS-5-2_003

تاریخ نمایه سازی: 24 خرداد 1401

Abstract:

This paper considers the generation of some interpretable fuzzy rules for assigning an amino acid sequence into the appropriate protein superfamily. Since the main objective of this classifier is the interpretability of rules, we have used the distribution of amino acids in the sequences of proteins as features. These features are the occurrence probabilities of six exchange groups in the sequences. To generate the fuzzy rules, we have used some modified versions of a common approach. The generated rules are simple and understandable, especially for biologists. To evaluate our fuzzy classifiers, we have used four protein superfamilies from UniProt database. Experimental results show the comprehensibility of generated fuzzy rules with comparable classification accuracy.

Authors

EGHBAL G. MANSOORI

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT, COLLEGE OF ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN

MANSOOR J. ZOLGHADRI

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT, COLLEGE OF ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN

SERAJ D. KATEBI

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT, COLLEGE OF ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN

HASSAN MOHABATKAR

BIOLOGY DEPARTMENT, COLLEGE OF SCIENCE, SHIRAZ UNIVERSITY, SHIRAZ, IRAN

REZA BOOSTANI

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT, COLLEGE OF ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN

MOHAMMAD H. SADREDDINI

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT, COLLEGE OF ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • [۱]R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and A. ...
  • [۲]S. F. Altschul, T. L. Madden, A. A. Schaffer, J. ...
  • [۳]S. Bandyopadhyay, An efficient technique for superfamily classification of amino ...
  • [۴]A. Baxevanis and F.B.F. Ouellette, Bioinformatics: A practical guide to ...
  • [۵]M. O. Dayhoff, R. M. Schwartz and B. C. Orcutt, ...
  • [۶]L. French, A. Ngom and L. Rueda, Fast protein superfamily ...
  • [۷]A. Gonzalez and R. Perez, SLAVE: A genetic learning system ...
  • [۸]H. Ishibuchi, T. Nakashima and T. Morisawa, Voting in fuzzy ...
  • [۹]H. Ishibuchi, K. Nozaki, and H. Tanaka, Distributed representation of ...
  • [۱۰]H. Ishibuchi and T. Yamamoto, Comparison of heuristic criteria for ...
  • [۱۱]H. Ishibuchi and T. Yamamoto, Rule weight specification in fuzzy ...
  • [۱۲]T. Jaakkola, M. Diekhans and D. Haussler, A discriminative framework ...
  • [۱۳]C. Leslie, E. Eskin and W.S. Noble, The spectrum kernel: ...
  • [۱۴]M. Madera and J. Gough, A comparison of profile hidden ...
  • [۱۵]E. G. Mansoori, M. J. Zolghadri and S. D. Katebi, ...
  • [۱۶]E. G. Mansoori, M. J. Zolghadri and S. D. Katebi, ...
  • [۱۷]R. Mikut, J. Jäkel and L. Gröll, Interpretability issues in ...
  • [۱۸]W. Pedrycz, Why triangular membership functions?, Fuzzy Sets and Systems, ...
  • [۲۰]J. A. Roubos, M. Setnes and J. Abonyi, Learning fuzzy ...
  • [۲۱]The UniProt Consortium, The Universal Protein Resource (UniProt), Nucleic AcidsResearch,۵ ...
  • [۲۲]D. Wang and G. Huang, Protein sequence classification using extreme ...
  • [۲۳]D. Wang, N. K. Lee and T. S. Dillon, Extraction ...
  • [۲۴]J. T. L. Wang, Q. C. Ma, D. Shasha and ...
  • [۲۵]C. H. Wu and J. W. McLarty, Neural Networks and ...
  • [۲۶]M. J. Zolghadri and E. G. Mansoori, Weighting fuzzy classification ...
  • نمایش کامل مراجع