USING DISTRIBUTION OF DATA TO ENHANCE PERFORMANCE OF FUZZY CLASSIFICATION SYSTEMS

Publish Year: 1386
نوع سند: مقاله ژورنالی
زبان: English
View: 167

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJFS-4-1_003

تاریخ نمایه سازی: 24 خرداد 1401

Abstract:

This paper considers the automatic design of fuzzy rule-basedclassification systems based on labeled data. The classification performance andinterpretability are of major importance in these systems. In this paper, weutilize the distribution of training patterns in decision subspace of each fuzzyrule to improve its initially assigned certainty grade (i.e. rule weight). Ourapproach uses a punishment algorithm to reduce the decision subspace of a ruleby reducing its weight, such that its performance is enhanced. Obviously, thisreduction will cause the decision subspace of adjacent overlapping rules to beincreased and consequently rewarding these rules. The results of computersimulations on some well-known data sets show the effectiveness of ourapproach.

Keywords:

Fuzzy rule-based classification systems , Rule weight

Authors

EGHBAL G. MANSOORI

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT, COLLEGE OF ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN

MANSOOR J. ZOLGHADRI

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT, COLLEGE OF ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN

SERAJ D. KATEBI

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT, COLLEGE OF ENGINEERING, SHIRAZ UNIVERSITY, SHIRAZ, IRAN

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • S. Abe and M. S. Lan, A method for fuzzy ...
  • J. C. Bezdek, Pattern Analysis. In E. H. Ruspini, P. ...
  • H. Ishibuchi and T. Nakashima, Improving the performance of fuzzy ...
  • H. Ishibuchi and T. Nakashima, Effect of rule weights in ...
  • H. Ishibuchi, T. Nakashima and T. Morisawa, Voting in fuzzy ...
  • H. Ishibuchi, K. Nozaki and H. Tanaka, Distributed representation of ...
  • H. Ishibuchi and T. Yamamoto, Comparison of heuristic criteria for ...
  • H. Ishibuchi and T. Yamamoto, Rule Weight Specification in Fuzzy ...
  • H. Ishibuchi, T. Yamamoto and T. Nakashima, Fuzzy data mining: ...
  • L.I.Kuncheva and J. C. Bezdek, A fuzzy generalized nearest prototype ...
  • S. Mitra and Y. Hayashi, Neuro-fuzzy rule generation: Survey in ...
  • D. Nauck and R. Kruse, How the learning of rule ...
  • D. Nauk and R. Kruse, Obtaining interpretable fuzzy classification rules ...
  • K. Nozaki, H. Ishibuchi and H. Tanaka, Adaptive Fuzzy Rule-Based ...
  • J. A. Roubos, M. Setnes and J. Abonyi, Learning fuzzy ...
  • D. Setiono, Generating concise and accurate classification rules for breast ...
  • M. Setnes and R. Babuska, Rule-Based Modeling: Precision and Transparency, ...
  • M. Setnes and R. Babuska, Fuzzy relational classifier trained by ...
  • M. Setnes and J. A. Roubos, GA-fuzzy modeling and classification: ...
  • J. Valente de Oliveira, Semantic constraints for membership function optimization, ...
  • J. Van den Berg, U. Kaymak and W. M. Van ...
  • L. Wang and Jerry M. Mendel, Generating fuzzy rules by ...
  • S. M. Weiss and C. A. Kulikowski, Computer Systems that ...
  • نمایش کامل مراجع