Evaluation of antibiotic resistance and prevalence of multi-antibiotic resistant genes among Acinetobacter baumannii strains isolated from patients admitted to al-yarmouk hospital
Publish place: Cellular, Molecular and Biomedical Reports، Vol: 1، Issue: 2
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 253
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CMBR-1-2_002
تاریخ نمایه سازی: 29 خرداد 1401
Abstract:
Emerging antibiotic resistance in microorganisms particularly multidrug-resistant strains among bacteria are increasing because of misusing antibiotics as well as evolution of antibiotic resistance mechanisms. In this regard, Acinetobacter baumannii is one of the six most common multidrug-resistant microorganisms in hospitals. Recently, carbapenems, as common antibiotics to treat infections of Acinetobacter have not an acceptable efficiency because of the resistance emergence to these antibiotics in many strains. In this study, resistant strains of A. baumannii were isolated and identified as an appropriate preventive strategy to reduce infections in hospitals. Disc diffusion test and PCR method were used to isolate of resistant strains and identify beta-lactamase genes of blaAmpC, blaTEM, blaVIM, and blaSHV. This study showed that these genes were contributed in antibiotic resistance with about ۱۸.۴% and ≥۵۳.۵% strains expressing all ۴ genes and ≥۳ genes, respectively. The blaAmpC gene is more prevalent than other genes, and this is probably due to the prevalence or rapid transfer of this beta-lactamase. However, more studies should be performed in a comparative way to isolate and identify other antibiotic-resistant bacterial strains relate to other hospitals.
Keywords:
Authors
Zahraa Khudhair Abbas-Al-Khafaji
Medical Laboratory Technique Department, The Islamic University, Diwaniya, Iraq
Qassim hassan Aubais-aljelehawy
Research and Studies Department, The Islamic University, Najaf, Iraq
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :