Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها
Paper
Title

ON FELBIN’S-TYPE FUZZY NORMED LINEAR SPACES AND FUZZY BOUNDED OPERATORS

Year: 1390
COI: JR_IJFS-8-5_009
Language: EnglishView: 23
This Paper With 14 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 14 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Mohammad Janfada - Department of Mathematics, Sabzevar Tarbiat Moallem University, Sabzevar, Iran
Hamid Baghani - Department of Mathematics, Semnan University, Semnan, Iran
Omid Baghani - Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract:

In this note, we aim to present some properties of the space of all weakly fuzzy bounded linear operators, with the Bag and Samanta’s operator norm on Felbin’s-type fuzzy normed spaces. In particular, the completeness of this space is studied. By some counterexamples, it is shown that the inverse mapping theorem and the Banach-Steinhaus’s theorem, are not valid for this fuzzy setting. Also finite dimensional normed fuzzy spaces are considered briefly. Next, a Hahn-Banach theorem for weakly fuzzy bounded linear functional with some of its applications are established.

Keywords:

Paper COI Code

This Paper COI Code is JR_IJFS-8-5_009. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

https://civilica.com/doc/1476585/

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
Janfada, Mohammad and Baghani, Hamid and Baghani, Omid,1390,ON FELBIN’S-TYPE FUZZY NORMED LINEAR SPACES AND FUZZY BOUNDED OPERATORS,https://civilica.com/doc/1476585

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • T. Bag and S. K. Samanta,Fixed point theorems in Felbin’s ...
  • T. Bag and S. K. Samanta A comparative study of ...
  • T. Bag and S. K. Samanta,Fuzzy bounded linear operators in ...
  • T. Bag and S. K. Samanta,Fuzzy bounded linear operators, Fuzzy ...
  • T. Bag and S. K. Samanta,Finite dimensional fuzzy normed linear ...
  • S. C. Cheng and J. N. Mordeson,Fuzzy linear operator and ...
  • D. Dubois and H. Prade,Fuzzy elements in a fuzzy set, ...
  • C. Felbin,Finite dimensional fuzzy normed linear spaces, Fuzzy Sets and ...
  • C. Felbin,Finite dimensional fuzzy normed linear spaces II, J. Analysis, ...
  • O. Kaleva and S. Seikkala,fuzzy metric spaces, Fuzzy Sets and ...
  • A. K. Katsaras,Fuzzy topological vector spaces, Fuzzy Sets and Systems, ...
  • I. Kramosil and J. Michalek, Fuzzy metric and statistical metric ...
  • M. Itoh and M. Ch¯o, Fuzzy bounded operators, Fuzzy sets ...
  • M. Mizumoto and J. Tanaka,Some properties of fuzzy numbers, In: ...
  • A. Narayanan, S. Vijayabalaji and N. Thillaigovindan,Intuitionistic fuzzy bounded linear ...
  • S. M. Vaezpour and F. Karimi, t-Best approximation in fuzzy ...
  • J. Xiao and X. Zhu, On linearly topological structure and ...
  • J. Xiao and X. Zhu, Fuzzy normed space of operators ...

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.

Support