Comparison between the performance of four metaheuristic algorithms in training a multilayer perceptron machine for gold grade estimation
Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 227
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMGE-56-2_002
تاریخ نمایه سازی: 20 تیر 1401
Abstract:
Reserve evaluation is a very difficult and complex process. The most important and yet most challenging part of this process is grade estimation. Its difficulty derived from challenges in obtaining required data from the deposit by drilling boreholes, which is a very time consuming and costly act itself. Classic methods which are used to model the deposit are based on some preliminary assumptions about reserve continuity and grade spatial distribution which are not true about all kind of reserves. In this paper, a multilayer perceptron (MLP) artificial neural network (ANN) is applied to solve the problem of ore grade estimation of highly sparse data from zarshouran gold deposit in Iran. The network is trained using four metaheuristic algorithms in separate stages for each algorithm. These algorithms are artificial bee colony (ABC), genetic algorithm (GA), imperialist competitive algorithm (ICA) and particle swarm optimization (PSO). The accuracy of predictions obtained from each algorithm in each stage of experiments were compared with real gold grade values. We used unskillful value to check the accuracy and stability of each network. Results showed that the network trained with ABC algorithm outperforms other networks that trained with other algorithms in all stages having least unskillful value of ۱۳.۹۱ for validation data. Therefore, it can be more suitable for solving the problem of predicting ore grade values using highly sparse data.
Keywords:
Authors
Andisheh Alimoradi
Department of Mining and Petroleum Engineering, Faculty of Engineering, Imam Khomeini International University
Hossein Hajkarimian
Department of Mining and Petroleum Engineering, Faculty of Engineering, Imam Khomeini International University
Hamidreza Hemati Ahooi
Department of Mining and Petroleum Engineering, Faculty of Engineering, Imam Khomeini International University
Mohammad Salsabili
Departement des sciences appliquees, Universite du Quebec a Chicoutimi, Quebec, Canada
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :