Prediction of CO and PM۱۰ in Cold and Warm Seasons and Survey of the Effect of Instability Indices on Contaminants Using Artificial Neural Network: A Case Study in Tehran City
Publish place: Iranica Journal of Energy and Environment، Vol: 13، Issue: 1
Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 216
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJEE-13-1_008
تاریخ نمایه سازی: 20 تیر 1401
Abstract:
Today, air pollution in urban areas is a major issue that have been affecting human health and the environment. Over the years artificial neural network methods has been used for prediction of pollutants concentration in many metropolitans. In the present study data were obtained from department of environment and air quality controlling stations in city of Tehran from March ۲۰۱۲ to October ۲۰۱۳. Prediction of CO and PM۱۰ contaminations during cold and warm seasons under the influence of instability indices and meteorological parameters was done using the artificial neural network. Results of the modeling process showed that the highest correlation coefficient was obtained ۰.۸۴ for PM۱۰ in warm season. On the contrary, the highest correlation coefficient of CO in cold season was ۰.۷۸. Also, the effect of instability indices on air pollution was investigated. The highest CO concentration occurred during cold seasons (R۲= ۰.۸۱), while the lowest concentration was in warm season (R۲= ۰.۷۲). In case of PM, the highest concentration occurred during warm seasons (R۲= ۰.۸۴), while the lowest concentration was in cold season (R۲=۰.۷۵).
Keywords:
Authors
R. Farhadi
Environmental Sciences Department, Hakim Sabzevari University, Sabzevar, Iran
M. Hadavifar
Environmental Sciences Department, Hakim Sabzevari University, Sabzevar, Iran
M. Moeinaddini
Environmental Sciences Department, University of Tehran, Tehran, Iran
M. Amintoosi
Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :