Developing New Models for Flyrock Distance Assessment in Open-Pit Mines
Publish place: Journal of Mining and Environment، Vol: 13، Issue: 2
Publish Year: 1401
نوع سند: مقاله ژورنالی
زبان: English
View: 234
This Paper With 15 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMAE-13-2_004
تاریخ نمایه سازی: 29 تیر 1401
Abstract:
In this research work, a comprehensive study is conducted to predict flyrock as a typical and undesirable phenomenon occurring during the blasting operation in open-pit mining. Despite the availability of several empirical methods for predicting the flyrock distance, the complexity of flyrock analysis has resulted in the low performance of these models. Therefore, the statistical and robust artificial intelligence techniques are applied for flyrock prediction in the Sungun copper mine in Iran. For this purpose, the linear multivariate regression (LMR), imperialist competitive algorithm (ICA), adaptive neuro-fuzzy inference system (ANFIS), and artificial neural network (ANN) methods are applied to predict flyrock with effective parameters including the blasthole diameter, stemming, burden, powder factor, and maximum charge per delay. According to the attained results, the ANN model with the structure of ۵-۸-۱, Levenberg-Marquardt as the learning algorithm, and log-sigmoid (logsig) as the transfer functions are selected as the optimal network with the RMSE and R۲ values of ۵.۰۴ m and ۹۵.۶% to predict flyrock, respectively. Also it can be concluded that the ICA technique has a relatively high capability in predicting flyrock, with the LMR and ANFIS models placed in the next. Finally, the sensitivity analysis reveal that the powder factor and blasthole diameters have the most importance on the flyrock distance in the present work.
Keywords:
Flyrock distance , linear multivariate regression , Imperialist Competitive Algorithm , Adaptive Neuro-Fuzzy Inference System , Artificial Neural Network
Authors
J. Shakeri
Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
H. Amini Khoshalan
Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
H. Dehghani
Department of Mining Engineering, Hamedan University of Technology, Hamedan, Iran
M. Bascompta
Department of Mining Engineering, Polytechnic University of Catalonia, Barcelona, Spain
K. Onyelowe
Department of Civil Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :