CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

طراحی مدلی جهت پیش بینی بازده قیمت جهانی طلا (با تاکید بر مدل های ترکیبی شبکه عصبی کانولوشنی و مدل های خانواده گارچ)

عنوان مقاله: طراحی مدلی جهت پیش بینی بازده قیمت جهانی طلا (با تاکید بر مدل های ترکیبی شبکه عصبی کانولوشنی و مدل های خانواده گارچ)
شناسه ملی مقاله: JR_FEJ-13-50_004
منتشر شده در در سال 1401
مشخصات نویسندگان مقاله:

محمد جواد بختیاران - گروه علوم اقتصادی، دانشکده مدیریت و اقتصاد ، دانشگاه تربیت مدرس، تهران، ایران
مهدی ذوالفقاری - گروه علوم اقتصادی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

خلاصه مقاله:
این مقاله به معرفی مدل هایی از ترکیب خانواده GARCH و شبکه عصبی کانولوشنی، جهت پیش بینی بازدهی روزانه طلای جهانی طی فاصله زمانی ۱۳۹۸-۱۳۹۰ می پردازد. در این پژوهش از مدل های دارای حافظه کوتاه مدت GARCH و EGARCH استفاده می شود. علاوه بر بکارگیری مدل های حافظه کوتاه مدت، با توجه به کارایی مدل های ترکیبی خانواده GARCH (در مقایسه با مدل های فردی) در پیش بینی داده های مالی، در این مطالعه، تمامی مدل های خانواده GARCH با شبکه عصبی کانولوشنی ترکیب شده و با استفاده از مدل های ترکیبی بازده طلا پیش بینی شده است . وهمچنین پیش بینی به صورت ده گام به جلو بوده است. نتایج تحقیق حاکی از برتری مدل پیشنهادی نسبت به مدل های جاری در پیش بینی سری زمانی بازدهی قیمت طلا بود. همچنین براساس معیارهای ارزیابی خطای پیش بینی RMSE و MAPE، مدل CNN-EGARCH برپایه توزیع نرمال دارای خطای پیش بینی کمتری نسبت به ۲۳ مدل دیگر دارد. در این راستا، معیار بررسی صحت پیش بینی دیبولد-ماریانو (DM) نیز یافته های فوق را تایید میکند.

کلمات کلیدی:
طلا, پیش بینی, خانواده GARCH, شبکه عصبی کانولوشنی, مدل ترکیبی

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1490147/