A novel structure of highly interpretable fuzzy rules extraction

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 180

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJIMI-10-1_004

تاریخ نمایه سازی: 30 مرداد 1401

Abstract:

Introduction: Extracting effective rules from medical data with two indicators of accuracy and high interpretability is essential to increase the accuracy and speed of diagnosis by specialists. As a result, the production of medical assistant systems that are able to detect the rules governing the data plays a vital role in early detection of the disease and thus increase the chances of treatment, disease control and maintaining the quality of life of patients.Material and Methods: In this paper, a system of automatic extraction of rules from medical data by a new hybrid method based on fuzzy logic and genetic algorithm is presented. Genetic algorithms are used to automatically generate these rules. The Parkinson UCI dataset including ۱۹۵ records and ۲۳ variables was used to evaluate the proposed method based on the criteria of interpretability, accuracy, sensitivity and specificity.Results: The evaluation of the proposed model on the Parkinson's dataset was the accuracy of ۸۴.۶۲%. This accuracy is supported by ۴ fuzzy rules with an average rule length of ۲ and using ۷ linguistic terms extremely low, very low, low, normal, high, very high and extremely high. All fuzzy membership functions that represent each term have the same width.Conclusion: The proposed method, based on the three criteria of low number of rules, short rule length and symmetric membership functions with equal width for all variables, is quite suitable for automatic production of accurate and compact rules with high interpretability in medical data. . A ۹۰% dimensionality reduction in the experimental evaluation showed that this model could be used to implement real-time systems.

Authors

Fatemeh Ahouz

Behbahan Khatam Alanbia University of Technology, Behbahan, Iran

Amin Golabpour

School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran