Numerical Simulation of Incompressible Viscous Flows using a Mesh-Free Lattice Boltzmann Method

Publish Year: 1391
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,511

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

ISME20_142

تاریخ نمایه سازی: 18 تیر 1391

Abstract:

In recent years, the lattice Boltzmann method (LBM) has become an alternative and promising computational fluid dynamics (CFD) approach for simulation of complex fluid flows. Despite its huge success in many practical applications, the conventional (standard) LBM is restricted to the lattice uniformity in the physical space. This is an important drawback of the standard LBM for the application to flow problems with complex geometry currently there are four ways to remove this drawback of standard LBM. One of the methods is the Taylor series expansion and least squares-based LBM (TLLBM).this method is based on the standard LBM with introduction of the Taylor series expansion and the least squares approach. The salient feature of the TLLBM is the fact that the final equation is an explicit form and essentially has no limitation on the mesh structure and lattice model. In the present work, the TLLBM with D2Q9 lattice model is used to simulate 2- D steady incompressible viscous flows (both internal and external) on non-uniform meshes. Three test cases are studied: (a) flow past a circular cylinder with a nonuniform O-type mesh; (b) flow in a rectangular lid driven cavity with a non-uniform H-type mesh; (c) flow in a channel with a 4% thick circular arc bump. It is found that this model can give very accurate results.

Authors

Abdolrahman Dadvand

Department of Mechanical Engineering, Urmia University of Technology