Environmental vulnerability characteristics in an active swarm region

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 193

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_GJESM-9-2_003

تاریخ نمایه سازی: 7 آبان 1401

Abstract:

BACKGROUND AND OBJECTIVES: For the first time, an earthquake swarm occurred from April to August ۲۰۲۱ in Lake Toba; Indonesia, the world’s largest caldera lake. Although the earthquakes were located in a volcanic environment, the swarm activities could also be related to tectonic activities on the Sumatran fault. The swarm activities occurred at shallow depths and may influence the ground surface condition in which soil or rock below the subsurface can amplify the shaking. The research objective was to investigate the characteristics of the earthquake swarm in the Toba Caldera from the spectrum of the earthquake waveforms, site frequency, and horizontal-to-vertical ratio of sites.METHODS: The spectra of very closely located swarm and nonswarm earthquakes were analyzed to investigate the differences between both types of seismic events. The seismic spectral ratio of horizontal-over-vertical components was applied to calculate the spectrum in the active swarm region from all newly installed seismic sensors. The root mean square was applied to average the amplitude of the horizontal components. Then, the values of the horizontal-to-vertical ratios were obtained by comparing the average values of the horizontal and vertical components.FINDING: The microtremor study showed a more complete spectrum waveform from the low-to-high frequency of a non swarm earthquake, while the swarm earthquakes generated high-frequency seismograms. From the combination values of natural site frequencies and the horizontal-to-vertical ratios, the Toba environment can be classified into five clusters: I) Samosir–Hasinggaan, II) Samosir–Parapat, III) Silimapuluh, IV) Balige–Paropo, and V) Panjaitan. Samosir Island located in the middle of the Toba Caldera has the highest frequency and amplification, which are divided into two clusters.CONCLUSION: Cluster I, with high amplification corresponding to the earthquake intensity, was felt by people in northern Samosir. Cluster II is located in the southern part of Samosir Island. Cluster III features moderate values of amplification and seismic vulnerability and therefore needs attention before future infrastructure development. Cluster IV, located in the southern and northern regions with high amplification and vulnerability, is associated with the Quaternary eruption. Cluster V, situated in northeastern Toba, has the lowest amplification and vulnerability compared to other clusters. The microtremor results provide good correlation with the geology in the volcanic environment of the Toba region.

Authors

A.V.H. Simanjuntak

۱Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia

U Muksin

Tsunami and Disaster Mitigation Research Center, Universitas Syiah Kuala, Gampong Pie, Indonesia

A. Arifullah

Tsunami and Disaster Mitigation Research Center, Universitas Syiah Kuala, Gampong Pie, Indonesia

K. Lythgoe

Earth Observatory of Singapore, Nanyang Technological of Singapore, Singapore

Y. Asnawi

Department of Science and Technology, Universitas Islam Negeri Ar-Raniry, Kopelma Darussalam, Banda Aceh, Indonesia

M. Sinambela

Meteorological, Climatological, and Geophysical Agency, BMKG, Medan, Indonesia

S. Rizal

Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh Indonesia

S. Wei

Earth Observatory of Singapore, Nanyang Technological of Singapore, Singapore

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Alamri, A.M.; Bankher, A.; Abdelrahman, K.; El-Hadidy, M.; Zahran, H. ...
  • Asnawi, Y.; Simanjuntak, A.; Muksin, U.; Rizal, S.; Syukri, M.; ...
  • Boore, D.M., (۲۰۰۴). Estimatings (۳۰) (or NEHRP site classes) from ...
  • Chesner, C.A.; Rose, W.I.; Deino, A.L.; Drake, R.; Westgate, J. ...
  • Chesner, C.A.; Luhr, J.F., (۲۰۱۰). A melt inclusion study of ...
  • Chesner, C.A., (۲۰۱۲). The Toba caldera complex. Q. Int., ۲۵۸: ۵-۱۸ (۱۴ ...
  • Chesner, C.A.; Barbee, O.A.; McIntosh, W.C., (۲۰۲۰). The enigmatic origin ...
  • Claprood, M.; Asten, M.W.; Kristek, J., (۲۰۱۲). Combining HVSR microtremor ...
  • Daryono, M.R.; Natawidjaja, D.H.; Sieh, K., (۲۰۱۲). Twin‐surface ruptures of ...
  • Forte, G.; Chiocarelli, E.; De Falco, M; Cito, P.; Santo, ...
  • Geethanjali, K.; Achyuthan, H.; Jaiswal, M., (۲۰۱۹). The Toba tephra ...
  • Goda, K.; Kiota, T.; Fokhrel, R.M.; Chiaro, G.; Katagiri, T.; ...
  • Gualandi, A.; Liu, Z.; Rollins, C. (۲۰۲۰). Post-large earthquake seismic ...
  • Hayashi, Y.; Morita, Y. (۲۰۰۳). An image of a magma ...
  • Horton, S. (۲۰۱۲). Disposal of hydrofracking waste fluid by injection ...
  • Hurukawa, N.; Wulandari, B. R.; Kasahara, M., (۲۰۱۴). Earthquake history ...
  • Irwandi, H.; Rosid, M.S.; Mart, T., (۲۰۲۱). The effects of ...
  • Jiang, C.; Yahong, D.; Huangdong, M.; You, X.; Ge, C., ...
  • Knight, M.D.; Walker, G.P.; Ellwood, B.B.; Diehl, J.F., (۱۹۸۶). Stratigraphy, ...
  • Koulakov, I.; Yudistira, T.; Luehr, B.G., (۲۰۰۹). P, S velocity ...
  • Koulakov, I.; Kasatkina, E.; Shapiro, N.M.; Jaupart, C.; Vasilevsky, A.; ...
  • Manzo, R.; Nardone, L.; Gaudiosi, G.; Martino, C.; Galluzzo, D.; ...
  • Maresca, R.; Nardone, L.; Gizzi, F. T.; Potenza, M. R., ...
  • Muksin, U.; Bauer, K.; Haberland, C., (۲۰۱۳). Seismic Vp and ...
  • Muksin, U.; Haberland, C.; Nukman, M.; Bauer, K.; Weber, M., ...
  • Muksin, U.; Bauer, K.; Muzli, M.; Ryberg, T.; Nurdin, I.; ...
  • Nakamura, Y., (۲۰۰۹). Basic structure of QTS (HVSR) and examples ...
  • Parker, R.N.; Hancox, G.T.; Petley, D.N.; Messey, C.I.; Densmore, A.L.; ...
  • Pasari, S.; Simanjuntak, A.V.; Mehta, A.; Sharma, Y., (۲۰۲۱). A ...
  • Pearce, N.J.; Westgate, J.A.; Gualda, G.A.; Gatti, E.; Muhammad, R.F., ...
  • Ryberg, T.; Muksin, U.; Bauer, K., (۲۰۱۶). Ambient seismic noise ...
  • Ross, Z.E.; Cochran, E.S., (۲۰۲۱). Evidence for latent crustal fluid ...
  • Sarma, N.S.; Kiran, R.; Rama Reddy, M.; Iyer, S.D.; Peketi, ...
  • Seivane, H.; García-Jerez, A.; Navarro, M.; Molina, L.; Navarro-Martínez, F., ...
  • Shelly, D.R.; Hill, D. P.; Massin, F.; Farrell, J., Smith, ...
  • Sieh, K.; Natawidjaja, D., (۲۰۰۰). Neotectonics of the Sumatran fault, ...
  • Soeprobowati, T.R. (۲۰۱۵). Integrated lake basin management for save Indonesian ...
  • Stankiewicz, J.; Ryberg, T.; Haberland, C.; Fauzi.; Natawidjaja, D. (۲۰۱۰). ...
  • Stanko, D.; Markušić, S.; Strelec, S.; Gazdek, M. (۲۰۱۷). Equivalent-linear ...
  • Tün, M.; Pekkan, E., Ozel, O.; Guney, Y., (۲۰۱۶). An ...
  • نمایش کامل مراجع