CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

فیلتر و فشرده سازی مجموعه داده های متابولومیکس کروماتوگرافی مایع- طیف سنجی جرمی با استفاده از روش ناحیه مورد علاقه (ROI)

عنوان مقاله: فیلتر و فشرده سازی مجموعه داده های متابولومیکس کروماتوگرافی مایع- طیف سنجی جرمی با استفاده از روش ناحیه مورد علاقه (ROI)
شناسه ملی مقاله: IMTC03_006
منتشر شده در سومین کنفرانس ملی تجهیزات و فناوری های آزمایشگاهی در سال 1401
مشخصات نویسندگان مقاله:

زهرا حیدری - گروه شیمی کاربردی، دانشکده علوم، دانشگاه محقق اردبیلی
مریم خوشکام - گروه شیمی کاربردی، دانشکده علوم، دانشگاه محقق اردبیلی

خلاصه مقاله:
تجزیه و تحلیل مجموعه داده های حاصل از تکنیک های کروماتوگرافی (مایع یا گازی) جفت شده با طیف سنج جرمی در مطالعات متابولومیکسی، یک کار چالش برانگیز در طیف گسترده ای از رشته ها باشد، زیرا نیازمند پردازش بسیار گستردهی حجم وسیعی از داده ها است. بسته های مختلف تجزیه و تحلیل چنین داده هایی در چند سال اخیر برای تسهیل این تجزیه و تحلیلها ایجاد شده است. با این حال، بیشتر این استراتژیها شامل تراز کروماتوگرافی و شکلدهی قله هستند و اغلب هر »ویژگی« (یعنی یک پیک کروماتوگرافی) را با اندازهگیری منحصر به فرد نسبت جرم به بار مرتبط میکنند. بنابراین، توسعه یک استراتژی تجزیه و تحلیل داده های جایگزین که برای اکثر انواع مجموعه داده های طیف سنجی جرمی قابل استفاده باشد هنوز یک چالش در زمینه متابولومیکس است. بزرگ ترین چالشی که در این جا وجود دارد این است که داده های کروماتوگرافی حجیم و پیچیده هستند و تجزیه و تحلیل این داده ها به راحتی امکان پذیر نیست، به همین دلیل یک سری روش ها برای کاهش حجم این داده ها مورد نیاز است که در رایانه قابل کنترل باشند. در این مطالعه ، یک رویکرد جایگزین به نام ROI جهت فیلتر و فشرده سازی مجموعه داده های کروماوگرافی مایع طیف سنجی جرمی مربوط به یک سری داده های حذفی اسید چرب آمید هیدرولاز((FAAH در مغز و نخاع موش استفاده شد. این داده ها مربوط به ۱۲ موش در دو گروه می باشد. داده های کروماتوگرافی مایع طیف سنجی جرمی به کمک ROI فشرده سازی شده و داده ها با استفاده از محیط برنامه نویسی و محاسباتی متلب www.mathworks.com ,تجزیه و تحلیل شدند. ROI داده را از طریق جستجوی مناطق مورد علاقه در دامنه ی نسبت جرم به بار، در حالی که ساختار اصلی داده حفظ شده است را به یک ماتریس داده از ویژگیها تبدیل میکند بدون از دست دادن اطلاعات مربوط به بعد جرمی داده. روش استفاده شده در اینجا مزایای فیلتر و فشرده سازی داده ها را بر اساس جستجوی ویژگیهای ناحیه مورد علاقه بدون از دست دادن دقت طیفی، ترکیب میکند. این روش دارای مزایای زیادی از جمله عدم نیازمندی انجام هم ترازی پیک کروماتوگرافی یا مدلسازی است.در حال حاضر از فشرده سازی ROI به عنوان یک گام اولیه برای تشخیص پیک و / یا ادغام استفاده می کنند. به طور کلی، در این مطالعه سودمندی روش کمومتریکسیROIMCRبرای تجزیه و تحلیل داده های متابولومیک غیر هدفمند کروماتوگرافی مایع طیف سنجی جرمی را تایید می کند۱و۲

کلمات کلیدی:
Metabolomics ، Regions of interest (ROI)، LC-MS Data analysis

صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/1549673/