Experimental Study of the Particles Influence on the Pyramid Wake within the Turbulent Boundary Layer

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 143

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-16-1_004

تاریخ نمایه سازی: 29 آبان 1401

Abstract:

Particle imaging velocimetry (PIV) was used to study the near-field variation of a pyramid rough element in clear water and a liquid–solid boundary layer (thickness: ۶۰ mm). Particles with an average diameter of ۳۵۵ µm and Stokes number of ۴.۳ were injected into a ۱:۱۰۰۰ mass ratio (solid particles: water) liquid–solid two-phase solution. Experiments were conducted to collect instantaneous velocity field information in the streamwise–normal direction and streamwise–spanwise direction at a Reynolds number of ۸۳۵۰. Then, the average velocity field and turbulence intensity of the rough element wake under single-phase and two-phase conditions were compared, and the morphology and periodicity of the shedding structure were analyzed by using proper orthogonal decomposition (POD) combined with the power spectral density function (PSD). Particles were shown to have no significant impact on the recirculation area in the streamwise–spanwise plane but did result in a reduction of the recirculation zone in the streamwise–normal plane and a ۰.۲h closer location of the streamline's origin to the obstacle. Along with the weakening of the upwash structure, the particle phase diminishes the velocity gradient along the span direction and turbulence intensity. Structural shedding at the top of the pyramid and near the wall occurred simultaneously, and the same shedding period was maintained. Particularly, in the first two POD modes, the energy of the shedding structure near the wall was higher than that at the obstacle tip, with a maximum energy differential of approximately ۶%. The Strouhal number of the shedding structure decreased by particles from ۰.۲۱۷ to ۰.۲۰۹. The concentration distribution and degree of dispersion in the particle-laden flow illustrate different results, with lower statistics in the wake flow field.

Authors

Y. T. Cheng

Department of Process Equipment and Control Engineering, Hebei University of Technology, Tianjin, ۳۰۰۱۳۰, China

J. Sun

Department of Process Equipment and Control Engineering, Hebei University of Technology, Tianjin, ۳۰۰۱۳۰, China

P. Chen

Department of Process Equipment and Control Engineering, Hebei University of Technology, Tianjin, ۳۰۰۱۳۰, China

W. Y. Chen

Department of Process Equipment and Control Engineering, Hebei University of Technology, Tianjin, ۳۰۰۱۳۰, China

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Acarlar, M. S. and C. R. Smith (۱۹۸۷). A study ...
  • AbuOmar, M. M. and R. J. Martinuzzi (۲۰۰۸). Vortical structures ...
  • Agui, J. H. and J. Andreopoulos (۱۹۹۲) Experimental investigation of ...
  • Boivin, M., O. Simonin and K. D. Squires (۱۹۹۸). Direct ...
  • Crowe, C. T., R. A. Gore and T. R. Troutt ...
  • De Marchis, M., B. Milici and G. Sardina and E. ...
  • Dezan, D. J., A. D. Rocha and L. O. Salviano ...
  • Deyn, L. H., P. Forooghi, B. Frohnapfel, P. Schlatter, A. ...
  • Donohoe, S. R. and W. J. Bannink (۱۹۹۷). Surface reflective ...
  • Dritselis, C. D. and N. S. Vlachos (۲۰۰۸). Numerical study ...
  • Gao, T. D., J. Sun, W. Y. Chen, Y. Fan ...
  • Goswami, S. and A. Hemmati (۲۰۲۱). Evolution of turbulent pipe ...
  • Hayakawa, K., A. J. Smits and S. M. Bogdonoff (۱۹۸۴). ...
  • Hetsroni, G. (۱۹۸۹). Particles-turbulence interaction. International Journal of Multiphase Flow ...
  • El Hassan, M., J. Bourgeois and R. Martinuzzi (۲۰۱۵). Boundary ...
  • Hosseini, Z., R. J. Martinuzzi and B. R. Noack (۲۰۱۶). ...
  • Jiang, H. (۲۰۲۱). Formation mechanism of a secondary vortex street ...
  • Kirkil, G. and G. Constantinescu (۲۰۱۲). A numerical study of ...
  • Konstantinidis, E., S. Balabani and M. Yianneskis (۲۰۰۷). Bimodal vortex ...
  • Léon, O., P. Reulet and F. Chedevergne (۲۰۲۰). Aerodynamic and ...
  • Liu, X., H. Zhao, K. Luo and J. Fan (۲۰۱۶). ...
  • Luo, K., Q. Dai, X. Liu and J. Fan (۲۰۱۹). ...
  • Martinuzzi, R. and C. Trop Ea (۱۹۹۳). The flow around ...
  • Martinuzzi, R. J. and M. AbuOmar (۲۰۰۳). Study of the ...
  • Martinuzzi, R., M. Abuomar and E. Savory (۲۰۰۷). Scaling of ...
  • Martinuzzi, R. J. (۲۰۰۸). Dual vortex structure shedding from low ...
  • Padilla, M., I., F. Miró Miró and F. Pinna (۲۰۲۲). ...
  • Rashidi, M., G. Hetsroni and S. Banerjee (۱۹۹۰). Particle-turbulence interaction ...
  • Rastan, M. R., H. Shahbazi and A. Sohankar, M. M. ...
  • Richter, D. H. and P. P. Sullivan (۲۰۱۴). Modification of ...
  • Righetti, M. and G. P. Romano (۲۰۰۴). Particle–fluid interactions in ...
  • Saha, A. K. (۲۰۱۳). Unsteady flow past a finite square ...
  • Schmidt, O. T. and T. Colonius (۲۰۲۰). Guide to spectral ...
  • Sohankar, A. (۲۰۰۶). Flow over a bluff body from moderate ...
  • Sohankar, A., M. K. Esfeh, H. Pourjafari, M. M. Alam ...
  • Squires, K. D. and J. K. Eaton (۱۹۹۰). Particle response ...
  • Sumner, D., J. L. Heseltine and O. J. P. Dansereau ...
  • Vosper, S. B., I. P. Castro and W. H. Snyder ...
  • Wang, H. F., Y. Zhou and C. K. Chan and ...
  • Wang, H. F. and Y. Zhou (۲۰۰۹). The finite-length square ...
  • Wang, J., W. Zhao, Z. Su and G. Zhang, P. ...
  • Wang, M. Y., C. W. Yang, Z. L. Li, S. ...
  • Wille, R. (۱۹۷۴). Generation of oscillatory flows. Flow-Induced Structural Vibrations, ...
  • Yousif, M. Z. and H. Lim (۲۰۲۱). Improved delayed detached-eddy ...
  • Zhang, D., L. Cheng and H. An and M. Zhao ...
  • نمایش کامل مراجع