Comparative Study on the Effect of Leading Edge Protuberance of Different Shapes on the Aerodynamic Performance of Two Distinct Airfoils

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 105

This Paper With 21 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-16-1_013

تاریخ نمایه سازی: 29 آبان 1401

Abstract:

This study investigated the effect of leading-edge protuberances on the aerodynamic performance of two distinct airfoils with low Reynold’s number (Re): E۲۱۶ and SG۶۰۴۳. Three protuberance shapes, namely sinusoidal, slot, and triangular, were considered. The amplitudes (A) of protuberances considered were ۰.۰۳c, ۰.۰۶c, and ۰.۱۱c, and the wavelengths (W) were ۰.۱۱c, ۰.۲۱c, and ۰.۴۳c, where c is the chord of the airfoil. The numerical and experimental analyses were performed in the angle of attack (AoA) range of ۰° to +۲۰° at and Re of ۱۰۵. The numerical investigation was performed using the commercial computational fluid dynamics package ANSYS FLUENT. The SST k-ɷ model was used to simulate turbulent flow. The experimental force measurements were conducted using a highly sensitive three-component force balance in a subsonic wind tunnel facility. The flow physics was analyzed using vorticity contours in streamwise and spanwise slices and static pressure distribution contours. The smoke flow visualization technique was used to observe flow streamlines, boundary layer separation, and reattachment over the airfoil surface. The result indicated that the triangular and slot protuberances were the most beneficial for improving poststall lift and reducing skin friction drag. The operating mechanism involved a shift in pressure distribution due to leading-edge alterations and flow energization by secondary flow emanating from the protuberances.

Authors

C. Jayapal Reddy

Department of Mechanical Engineering, NITK Surathkal, Mangalore – ۵۷۵۰۲۵, Karnataka, India

A. Sathyabhama

Department of Mechanical Engineering, NITK Surathkal, Mangalore – ۵۷۵۰۲۵, Karnataka, India

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Bolzon, M. D., R. M. Kelso and M. Arjomandi (۲۰۱۷). ...
  • Cai, C., Z. Zuo, S. Liu and Y. Wu (۲۰۱۵). ...
  • Carreira Pedro, H. and M. Kobayashi (۲۰۰۸). Numerical study of ...
  • Chaudhary, M. K. C. M. and S. Prakash (۲۰۲۱). Experimental ...
  • Chen, T. Y. and L. R. Liou (۲۰۱۱). Blockage corrections ...
  • Corsini, A., G. Delibra and A. G. Sheard (۲۰۱۳). On ...
  • Custodio, D. (۲۰۰۷). The effect of humpback whale-like leading edge ...
  • Custodio, D., C. W. Henoch and H. Johari (۲۰۱۵). Aerodynamic ...
  • Drela, M. and H. Youngren (۲۰۰۱). XFOIL ۶.۹۴ user guide ...
  • Eleni, D. C., T. I. Athanasios and M. P. Dionissios ...
  • Esmaeili, A., H. E. C. Delgado and J. M. M. ...
  • Fernandes, I., Y. Sapkota, T. Mammen, A. Rasheed, C. Rebello ...
  • Fish, F. E. (۲۰۲۰). Biomimetics and the application of the ...
  • Fish, F. and G. V. Lauder (۲۰۰۶). Passive and active ...
  • Fletcher, N. H. (۱۹۷۵). Mechanics of flight. Physics Education ۱۰(۵), ۳۸۵ ...
  • FLUENT (۲۰۱۴). ۱۵.۰. Theory Guide ...
  • Gawad, A. F. A. (۲۰۱۳). Utilization of whale-inspired tubercles as ...
  • Godard, G. and M. Stanislas (۲۰۰۶). Control of a decelerating ...
  • Guerreiro, J. L. E. and J. M. M. Sousa (۲۰۱۲). ...
  • Gupta, R. K., V. Warudkar, R. Purohit and S. S. ...
  • Hansen, K. L., R. M. Kelso and B. B. Dally ...
  • Jin, W. and Y. G. Lee (۲۰۱۵). Drag reduction design ...
  • Johari, H., C. Henoch, D. Custodio and A. Levshin (۲۰۰۷). ...
  • Joseph, J., A. Sathyabhama and S. Sridhar (۲۰۲۲). Experimental and ...
  • Kline, S. J. (۱۹۵۳). Describing uncertainty in single sample experiments. ...
  • Menter, F. R., M. Kuntz and R. Langtry (۲۰۰۳). Ten ...
  • Miklosovic, D. S., M. M. Murray and L. E. Howle ...
  • Miklosovic, D. S., M. M. Murray, L. E. Howle and ...
  • New, T. H., Z. Y. Wei and Y. D. Cui ...
  • Patankar, S. V. (۲۰۱۸). Numerical heat transfer and fluid flow. ...
  • Polhamus, E. C. (۱۹۶۸). Application of the leading-edge-suction analogy of ...
  • Roskam, J. and C. T. E. Lan (۱۹۹۷). Airplane aerodynamics ...
  • Rostamzadeh Torghabeh, N., R. Kelso, B. Dally and K. Hansen ...
  • Siram, O., N. Sahoo and U. K. Saha (۲۰۲۲). Wind ...
  • Skillen, A., A. Revell, J. Favier, A. Pinelli and U. ...
  • Sreejith, B. K. and A. Sathyabhama (۲۰۲۰). Experimental and numerical ...
  • Stanway, M. J. (۲۰۰۸). Hydrodynamic effects of leading-edge tubercles on ...
  • Van Nierop, E. A., S. Alben and M. P. Brenner ...
  • Versteeg, H. K. and W. Malalasekera (۲۰۰۷). An introduction to ...
  • Weber, P. W., L. E. Howle and M. M. Murray ...
  • Wei, Z., T. H. New and Y. D. Cui (۲۰۱۸). ...
  • Zhang, M. M., G. F. Wang and J. Z. Xu ...
  • Zhang, M. M., G. F. Wang and J. Z. Xu ...
  • نمایش کامل مراجع