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Polarization constant \mathcal {K} (n,X)=\ for entire functions of exponential type
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In this paper we will prove that if L is a continuous symmetric n-linear form on a Hilbert space and \widehat{L} is the associated continuous n-
homogeneous polynomial, then ||L||=||\widehat{L}||. For the proof we are using a classical generalized inequality due to S. Bernstein for entire functions of
exponential type. Furthermore we study the case that if X is a Banach space then we have that|L|=|\widehat{L}|, \forall L \in{\mathcal{L}}~{s}
(~{n}X).If the previous relation holds for every L \in {\mathcal{L}}~{s}\left(~{n}X\right), then spaces {\mathcal{P}}\left(~{n}X\right) and L \in

{\mathcal{L} }~{s}(»{n}X) are isometric. We can also study the same problem using Fr\acute{e}chet derivative
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